
R

ACPI Component Architecture
Programmer Reference
Core Subsystem, Debugger, and Utilities

Revision 1.16

April 18, 2003

ACPI Component Architecture Programmer Reference
R

2 Ref No SC-<xxxx>

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The <Product Name> may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copyright © 2000 - 2003 Intel Corporation

*Other brands and names are the property of their respective owners.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 3

Contents
1 Introduction..11

1.1 Document Structure ...11
1.2 Rationale and Justification ...11
1.3 Reference Documents..12
1.4 Overview of the ACPI Component Architecture ...12
1.5 Overview of the ACPI Core Subsystem ...13

1.5.1 ACPI Core Subsystem ..14
1.5.2 Operating System Services Layer...14
1.5.3 Relationships Between the Host OS, Core Subsystem, and OSL..........15

1.5.3.1 Host Operating System Interaction..15
1.5.3.2 OS Services Layer Interaction...15
1.5.3.3 ACPI Core Subsystem Interaction...16

1.6 Architecture of the ACPI Core Subsystem ...17
1.6.1 AML Interpreter ...17
1.6.2 ACPI Table Management ..17
1.6.3 Namespace Management ...18
1.6.4 Resource Management ...18
1.6.5 ACPI Hardware Management ...18
1.6.6 Event Handling ..18

1.7 Architecture of the OS Services Layer (OSL) ..19
1.7.1 Functional Service Groups ..19

1.7.1.1 OS Bootload-Time Services ..20
1.7.1.2 Device Driver Load-Time Services ..20
1.7.1.3 OS Run-Time Services ..20
1.7.1.4 Asynchronous Services ...20

1.7.2 Required Functionality...20
1.7.2.1 Requests from OS to ACPI Subsystem...................................20
1.7.2.2 Requests from Application to ACPI Subsystem21
1.7.2.3 Requests from ACPI Subsystem to OS...................................21

2 Design Overview ...23
2.1 ACPI Namespace Fundamentals ...23

2.1.1 Named Objects..23
2.1.2 Scopes...23
2.1.3 Predefined Objects..24
2.1.4 Logical Namespace Layout ...24

2.2 Execution Model ...25
2.2.1 Initialization..25
2.2.2 Memory Allocation...25

2.2.2.1 Caller Allocates All Buffers ..26
2.2.2.2 ACPI Allocates Return Buffers ..26

2.2.3 Parameter Validation...27
2.2.4 Exception Handling ...27
2.2.5 Multitasking and Reentrancy...27
2.2.6 Event Handling ..27

2.2.6.1 Fixed Events ..28
2.2.6.2 General Purpose Events ...28
2.2.6.3 Notify Events..28

2.2.7 Address Spaces and Operation Regions ..28
2.2.7.1 Installation of Address Space Handlers...................................29
2.2.7.2 ACPI-Defined Address Spaces ...29

ACPI Component Architecture Programmer Reference
R

4 Ref No SC-<xxxx>

2.3 Policies and Philosophies...30
2.3.1 External Interfaces ..30

2.3.1.1 Exception Codes..30
2.3.1.2 Memory Buffers ...30

2.3.2 Subsystem Initialization...30
2.3.2.1 ACPI Table Validation..30
2.3.2.2 Required ACPI Tables ...31

3 Design and Implementation Details...32
3.1 Required Host OS Initialization Sequence ...32

3.1.1 Bootload and Low Level Kernel Initialization ..32
3.1.2 ACPI CA Subsystem Initialization ...32
3.1.3 Other OS Initialization ...32
3.1.4 Device Enumeration, Configuration, and Initialization32
3.1.5 Final OS Initialization...33

3.2 Required ACPI CA Initialization Sequence ..33
3.2.1 ACPI CA Subsystem Initialization ...33

3.2.1.1 AcpiInitializeSubsystem...33
3.2.2 ACPI Table and Namespace Initialization...33

3.2.2.1 AcpiLoadFirmwareTables..33
3.2.2.2 AcpiLoadTable...33
3.2.2.3 Internal ACPI Namespace Initialization34

3.2.3 Handler Installation..34
3.2.3.1 Handler Types ...34

3.2.4 Subsystem Initialization Completion ...34
3.2.4.1 AcpiEnableSubsystem...34
3.2.4.2 ACPI Hardware and Event Initialization...................................35
3.2.4.3 Just-in-time Address Space Initialization.................................35
3.2.4.4 AcpiIntializeObjects ...36
3.2.4.5 Other Operating System ACPI-related Initialization36

3.2.5 System Shutdown ...37
3.2.5.1 AcpiTerminate..37

3.3 Multithreading Support ...37
3.3.1 Reentrancy ..37
3.3.2 Control Method Execution ...37

3.3.2.1 Control Method Blocking ...37
3.3.2.2 Control Method Execution Rules ...38
3.3.2.3 A Simple Multithreading Model..38
3.3.2.4 A More Complex Multithreading Model39

3.3.3 Global Lock Support..40
3.3.3.1 Obtaining The Global Lock ..41
3.3.3.2 Releasing the Global Lock...41
3.3.3.3 Global Lock Interrupt Handler..42

3.3.4 Single Thread Environments...42
3.4 Debugging Support ..42

3.4.1 Function Tracing (ACPI_FUNCTION_TRACE Macro)............................42
3.4.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)43
3.4.3 ACPI Debugger ...44

3.5 Environmental Support Requirements ...44
3.5.1 Resource Requirements..44
3.5.2 C Library Functions ...44
3.5.3 System Include Files ...45

3.5.3.1 Customization to the Target Environment45
4 Interface Parameters and Data Types ...47

4.1 ACPI Subsystem Interface Parameters ...47

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 5

4.1.1 ACPI Names and Pathnames ...47
4.1.2 Pointers ...47
4.1.3 Buffers ...47

4.2 ACPI Subsystem Data Types...48
4.2.1 UINT64 and COMPILER_DEPENDENT_UINT6448
4.2.2 ACPI_PHYSICAL_ADDRESS...48
4.2.3 ACPI_POINTER ..48
4.2.4 ACPI_INTEGER ..48
4.2.5 ACPI_STRING – ASCII String ..48
4.2.6 ACPI_BUFFER – Input and Output Memory Buffers48

4.2.6.1 Input Buffer ..49
4.2.6.2 Output Buffer ...49

4.2.7 ACPI_HANDLE – Object Handle ..49
4.2.7.1 Predefined Handles ...50

4.2.8 ACPI_OBJECT_TYPE – Object Type Codes ...50
4.2.9 ACPI_OBJECT – Method Parameters and Return Objects....................50
4.2.10 ACPI_OBJECT_LIST – List of Objects ...52
4.2.11 ACPI_EVENT_TYPE – Fixed Event Type Codes...................................52
4.2.12 ACPI_TABLE_TYPE – ACPI Table Type Codes52
4.2.13 ACPI_TABLE_HEADER – Common ACPI Table Header52
4.2.14 ACPI_STATUS – Interface Exception Return Codes53

4.3 ACPI Resource Data Types ...53
4.3.1 PCI IRQ Routing Tables..53
4.3.2 Device Resources ...54

4.3.2.1 RESOURCE_TYPE – Resource Data Types..........................54
4.4 Exception Codes ..56

5 Subsystem Configuration...59
5.1 Configuration Files ...59
5.2 Per-Compiler Configuration..59

5.2.1 ACPI_DIV_64_BY_32 (Short 64-bit Divide) ..59
5.2.2 ACPI_SHIFT_RIGHT_64 (64-bit Shift)..59
5.2.3 ACPI_EXTERNAL_XFACE...59
5.2.4 ACPI_INTERNAL_XFACE ..60
5.2.5 ACPI_INTERNAL_VAR_XFACE...60
5.2.6 ACPI_SYSTEM_XFACE ...60
5.2.7 ACPI_PRINTF_LIKE_FUNC ...60
5.2.8 ACPI_UNUSED_VAR ...60
5.2.9 COMPILER_DEPENDENT_INT64 ...60
5.2.10 COMPILER_DEPENDENT_UINT64...60

5.3 Per-Machine Configuration...60
5.3.1 ACPI_ASM_MACROS ..60
5.3.2 ACPI_FLUSH_CPU_CACHE..61
5.3.3 ACPI_MACHINE_WIDTH..61
5.3.4 ACPI_OS_NAME ..61
5.3.5 ACPI_USE_STANDARD_HEADERS ...61
5.3.6 ACPI_ACQUIRE_GLOBAL_LOCK ...61
5.3.7 ACPI_RELEASE_GLOBAL_LOCK ...61

5.4 Other Compile-time Configuration..61
5.4.1 ACPI_APPLICATION ..61
5.4.2 ACPI_DEBUG ...61
5.4.3 PARSER_ONLY..62

5.5 Configuration of Subsystem Constants..62
5.5.1 MAX_STATE_CACHE_DEPTH ..62
5.5.2 MAX_PARSE_CACHE_DEPTH ...62

ACPI Component Architecture Programmer Reference
R

6 Ref No SC-<xxxx>

5.5.3 MAX_OBJECT_CACHE_DEPTH ...62
5.5.4 MAX_WALK_CACHE_DEPTH ...62

6 ACPI Core Subsystem - External Interface Definition ...63
6.1 Subsystem Initialization, Shutdown, and Status ..63

6.1.1 AcpiInitializeSubsystem...63
6.1.2 AcpiInstallInitializationHandler ..64

6.1.2.1 Interface to User Callback Function ..64
6.1.3 AcpiEnableSubsystem ..65
6.1.4 AcpiInitializeObjects ..66
6.1.5 AcpiGetSystemInfo..66
6.1.6 AcpiSubsystemStatus ...68
6.1.7 AcpiFormatException ..69
6.1.8 AcpiPurgeCachedObjects ...69
6.1.9 AcpiTerminate ...70

6.2 Memory Management ..71
6.2.1 AcpiAllocate...71
6.2.2 AcpiCallocate ..71
6.2.3 AcpiFree ..72

6.3 ACPI Hardware Management ..73
6.3.1 AcpiEnable ..73
6.3.2 AcpiDisable ...73
6.3.3 AcpiGetRegister ..74
6.3.4 AcpiSetRegister...75
6.3.5 AcpiSetFirmwareWakingVector ..76
6.3.6 AcpiGetFirmwareWakingVector ..77
6.3.7 AcpiGetSleepTypeData...78
6.3.8 AcpiEnterSleepStatePrep..79
6.3.9 AcpiEnterSleepState ...79
6.3.10 AcpiLeaveSleepState ..80
6.3.11 AcpiAcquireGlobalLock ...80
6.3.12 AcpiReleaseGlobalLock ..81
6.3.13 AcpiGetTimerResolution ...82
6.3.14 AcpiGetTimerDuration...82
6.3.15 AcpiGetTimer ..83

6.4 ACPI Table Management ...84
6.4.1 AcpiGetFirmwareTable..84
6.4.2 AcpiFindRootPointer ...85
6.4.3 AcpiLoadTables...86
6.4.4 AcpiLoadTable ..87
6.4.5 AcpiUnloadTable ...88
6.4.6 AcpiGetTableHeader...88
6.4.7 AcpiGetTable...89

6.5 ACPI Namespace Access ..91
6.5.1 AcpiEvaluateObject ...91
6.5.2 AcpiGetObjectInfo ...95
6.5.3 AcpiGetNextObject..97
6.5.4 AcpiGetParent ...98
6.5.5 AcpiGetType..99
6.5.6 AcpiGetHandle ..99
6.5.7 AcpiGetName ..101
6.5.8 AcpiGetDevices...102
6.5.9 AcpiAttachData..103
6.5.10 AcpiDetachData ..104
6.5.11 AcpiGetData ..105
6.5.12 AcpiWalkNamespace ..106

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 7

6.5.12.1 Interface to User Callback Function107
6.6 ACPI Resource Management...108

6.6.1 AcpiGetCurrentResources ..108
6.6.2 AcpiGetPossibleResources...109
6.6.3 AcpiSetCurrentResources...110
6.6.4 AcpiGetIRQRoutingTable..111
6.6.5 AcpiWalkResources ..112

6.6.5.1 Interface to User Callback Function113
6.7 ACPI Fixed Event Management...114

6.7.1 AcpiEnableEvent ...114
6.7.2 AcpiDisableEvent ..115
6.7.3 AcpiClearEvent..115
6.7.4 AcpiGetEventStatus ..116
6.7.5 AcpiInstallFixedEventHandler ...117

6.7.5.1 Interface to Fixed Event Handlers ...118
6.7.6 AcpiRemoveFixedEventHandler ...118

6.8 ACPI General Purpose Event Management ..120
6.8.1 AcpiInstallGpeBlock ..120
6.8.2 AcpiRemoveGpeBlock ..121
6.8.3 AcpiEnableGpe ...121
6.8.4 AcpiClearGpe ..122
6.8.5 AcpiGetGpeStatus...123
6.8.6 AcpiDisableGpe...124
6.8.7 AcpiInstallGpeHandler...126

6.8.7.1 Interface to General Purpose Event Handlers.......................127
6.8.8 AcpiRemoveGpeHandler...127

6.9 ACPI Miscellaneous Handler Support..129
6.9.1 AcpiInstallNotifyHandler ..129

6.9.1.1 Interface to Notification Event Handlers130
6.9.2 AcpiRemoveNotifyHandler ..131
6.9.3 AcpiInstallAddressSpaceHandler..132

6.9.3.1 Interface to Address Space Setup Handlers133
6.9.3.2 Interface to Address Space Handlers....................................134
6.9.3.3 Context for the Default PCI Address Space Handler135

6.9.4 AcpiRemoveAddressSpaceHandler..135
7 OS Services Layer - External Interface Definition..137

7.1 Environmental ..137
7.1.1 AcpiOsInitialize..137
7.1.2 AcpiOsTerminate...137
7.1.3 AcpiOsGetRootPointer ..138
7.1.4 AcpiOsPredefinedOverride..139
7.1.5 AcpiOsTableOverride ..139

7.2 Memory Management ..140
7.2.1 AcpiOsMapMemory...140
7.2.2 AcpiOsUnmapMemory ..141
7.2.3 AcpiOsGetPhysicalAddress ..141
7.2.4 AcpiOsAllocate ..142
7.2.5 AcpiOsFree ...142
7.2.6 AcpiOsReadable ...143
7.2.7 AcpiOsWritable..143

7.3 Multithreading and Scheduling Services ..144
7.3.1 AcpiOsGetThreadId...144
7.3.2 AcpiOsQueueForExecution...144
7.3.3 AcpiOsSleep..145

ACPI Component Architecture Programmer Reference
R

8 Ref No SC-<xxxx>

7.3.4 AcpiOsStall ..146
7.4 Mutual Exclusion and Synchronization ..146

7.4.1 AcpiOsCreateSemaphore ...147
7.4.2 AcpiOsDeleteSemaphore..148
7.4.3 AcpiOsWaitSemaphore ...148
7.4.4 AcpiOsSignalSemaphore ..149
7.4.5 AcpiOsCreateLock ..150
7.4.6 AcpiOsDeleteLock...150
7.4.7 AcpiOsAcquireLock ...151
7.4.8 AcpiOsReleaseLock ..152

7.5 Interrupt Handling...152
7.5.1 AcpiOsInstallInterruptHandler ...153

7.5.1.1 Interface to OS-independent Interrupt Handlers154
7.5.2 AcpiOsRemoveInterruptHandler ...154

7.6 Address Space Access ..155
7.6.1 Memory and Memory Mapped I/O ..155

7.6.1.1 AcpiOsReadMemory..155
7.6.1.2 AcpiOsWriteMemory..156

7.6.2 Port Input/Output ...156
7.6.2.1 AcpiOsReadPort ..156
7.6.2.2 AcpiOsWritePort ..157

7.6.3 PCI Configuration Space...157
7.6.3.1 AcpiOsReadPciConfiguration ..158
7.6.3.2 AcpiOsWritePciConfiguration ..158
7.6.3.3 AcpiOsDerivePciId...159

7.7 Stream I/O ..160
7.7.1 AcpiOsPrintf ..160
7.7.2 AcpiOsVprintf ..160
7.7.3 AcpiOsRedirectOutput...161

7.8 Miscellaneous...161
7.8.1 AcpiOsSignal ...161

7.8.1.1 ACPI_SIGNAL_FATAL..162
7.8.1.2 ACPI_SIGNAL_BREAKPOINT..162

7.8.2 AcpiOsGetLine ..162
8 ACPI Debugger ..164

8.1 Overview...164
8.2 Supported Environments..164

8.2.1 The AcpiExec Utility ..164
8.3 Debugger Architecture ...164
8.4 Configuration and Installation...165
8.5 Debugger Commands ..167

8.5.1 General Purpose Commands..167
8.5.1.1 Allocations ...167
8.5.1.2 Dump ...167
8.5.1.3 Exit ...168
8.5.1.4 Help..168
8.5.1.5 History (! And !!)...168
8.5.1.6 Level ..168
8.5.1.7 Quit ..169
8.5.1.8 Stats...169
8.5.1.9 Unload ...169

8.5.2 Namespace Access Commands ...169
8.5.2.1 Event..169
8.5.2.2 Find..170

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 9

8.5.2.3 Methods ...170
8.5.2.4 Namespace..170
8.5.2.5 Notify..170
8.5.2.6 Object ..171
8.5.2.7 Owner ..171
8.5.2.8 Prefix..171
8.5.2.9 References ..171
8.5.2.10 Resources..171
8.5.2.11 Terminate...172
8.5.2.12 Thread ...172

8.5.3 Control Method Execution Commands ...172
8.5.3.1 Arguments ...172
8.5.3.2 Breakpoint..172
8.5.3.3 Call...173
8.5.3.4 Debug ..173
8.5.3.5 Execute..173
8.5.3.6 Go ..173
8.5.3.7 Gpe ..173
8.5.3.8 Gpes ..174
8.5.3.9 Information...174
8.5.3.10 Into ...174
8.5.3.11 List ...174
8.5.3.12 Locals ..175
8.5.3.13 Results ...175
8.5.3.14 Set..176
8.5.3.15 Stop..176
8.5.3.16 Tree..176

8.5.4 File I/O Commands ...176
8.5.4.1 Close..176
8.5.4.2 Load...177
8.5.4.3 Open ..177

9 Tools and Utilities ...178
9.1 AcpiDump...178
9.2 AcpiExec...178
9.3 WDM Driver and Test Application ..178

10 Subsystem User Guide ...179
10.1 Using the ACPI Core Subsystem Interfaces ..179

10.1.1 Initialization Sequence ..179
10.1.2 Shutdown Sequence ...179
10.1.3 Traversing the ACPI Namespace (Low Level)179
10.1.4 Traversing the ACPI Namespace (High Level)182

10.2 Implementing the OS Services Layer...183
10.2.1 Parameter Validation...183
10.2.2 Memory Management ...183
10.2.3 Scheduling Services..183
10.2.4 Mutual Exclusion and Synchronization ...183
10.2.5 Interrupt Handling..184
10.2.6 Stream I/O ...184
10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)......................184

ACPI Component Architecture Programmer Reference
R

10 Ref No SC-<xxxx>

Figures

Figure 1. The ACPI Component Architecture..13
Figure 2. ACPI Subsystem Architecture..15
Figure 3. Interaction between the Architectural Components ...16
Figure 4. Internal Modules of the ACPI Core Subsystem ...17
Figure 5. Operating System to ACPI Subsystem Request Flow.......................................21
Figure 6. ACPI Subsystem to Operating System Request Flow.......................................22
Figure 7. Internal Namespace Structure ...25
Figure 8. Global Lock Architecture ..41
Figure 9. ACPI Debugger Architecture..165

Tables
Table 1. C Library Functions Used within the Subsystem ..45
Table 2. ACPI Object Type Codes ..50
Table 3. ACPI Table Type Codes..52
Table 4. Exception Code Values ...56

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 11

1 Introduction
1.1 Document Structure

This document consists of ten major sections:

1. Introduction: Contains a brief overview of the ACPI Component Architecture (CA) and the
interfaces for both the Core Subsystem and OS Services Layers.

2. Design Overview: Summary of the computational and architectural model that is implemented
by the ACPI component architecture.

3. Design and Implementation Details: Details concerning design decisions and
implementation specifics.

4. Interface Parameters and Data Types: Descriptions of the major data types and data
structures that are exposed via the external interfaces. Other related information required to
use the ACPI subsystems and interfaces.

5. Subsystem Configuration: Description of the available configuration options to tailor the
subsystem to different compilers and machines, as well as run-time tuning options.

6. ACPI CA Core Subsystem Interfaces: Detailed description of the programmatic interfaces
that are implemented by the core component of the ACPI Component Architecture.

7. OS Services Layer Interfaces: Detailed description of the programmatic interfaces that must
be implemented by operating system vendors in the layer that interfaces the ACPI CA Core
Subsystem to the host operating system.

8. ACPI Debugger: Overview, installation and configuration, and detailed descriptions of the
command set

9. Tools and Utilities: A brief overview of the miscellaneous tools and utilities that are part of
the Core Subsystem package.

10. Subsystem User Guide: Tips and techniques on how to use the Core Subsystem interfaces,
and how to implement the OSL interfaces to host a new operating system.

1.2 Rationale and Justification
The complexity of the ACPI specification leads to a lengthy and difficult implementation in
operating system software. The purpose of the ACPI component architecture is to simplify ACPI
implementations for operating system vendors (OSVs) by providing major portions of an ACPI
implementation in OS-independent ACPI modules that can be integrated into any operating system.

The ACPI CA software can be hosted on any operating system by writing a small and relatively
simple translation service between the ACPI subsystem and the host operating system (This service
is known as the OS Services Layer).

ACPI Component Architecture Programmer Reference
R

12 Ref No SC-<xxxx>

1.3 Reference Documents
• Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999

• Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000

• Advanced Configuration and Power Interface Specification, Revision 2.0a, March 32, 2002

• Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002

1.4 Overview of the ACPI Component Architecture
The ACPI Component Architecture (also referred to by the term “ACPI CA” in this document)
defines and implements a group of software components that together create an implementation of
the ACPI specification. A major goal of the architecture is to isolate all operating system
dependencies to a relatively small translation or conversion layer (the OS Services Layer) so that the
bulk of the ACPI CA code is independent of any individual operating system. Therefore, hosting the
ACPI CA code on new operating systems requires no source within the CA code itself. The
components of the architecture include (from the “top” down):

• A user interface to the power management and configuration features.

• A power management and power policy component (OSPM).

• A configuration management component.

• ACPI-related device drivers (for example, drivers for the Embedded Controller, SMBus,
Smart Battery, and Control Method Battery).

• An ACPI Core Subsystem component that provides the fundamental ACPI services (such as
the AML interpreter and namespace management).

• An OS Services Layer for each host operating system.

This document describes the ACPI Subsystem portion of the architecture only. Other components of
the Component Architecture are described in related documents.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 13

Figure 1. The ACPI Component Architecture

Operating System

Policy
Manager

Device
Drivers

ACPI Core Subsystem ACPI-
Related

Hardware

User Interface

1.5 Overview of the ACPI Core Subsystem
The ACPI Subsystem implements the low level or fundamental aspects of the ACPI specification.
Included are an AML parser/interpreter, ACPI namespace management, ACPI table and device
support, and event handling. Since the ACPI CA core provides low-level system services, it also
requires low-level operating system services such as memory management, synchronization,
scheduling, and I/O. To allow the Core Subsystem to easily interface to any operating system that
provides such services, an Operating System Services Layer translates OS requests into the system
calls provided by the host operating system. The OS Services Layer is the only component of the
ACPI CA that contains code that is specific to a host operating system. Thus, the ACPI Subsystem
consists of two major software components:

1. The ACPI Core Subsystem provides the fundamental ACPI services that are independent of
any particular operating system.

2. The OS Services Layer (OSL) provides the conversion layer that interfaces the ACPI Core
Subsystem to a particular host operating system.

When combined into a single static or loadable software module such as a device driver or kernel
subsystem, these two major components form the ACPI Subsystem. Throughout this document, the
term “ACPI Subsystem” refers to the combination of the ACPI Core Subsystem with the OS
Services Layer components into a single module, driver, or load unit.

ACPI Component Architecture Programmer Reference
R

14 Ref No SC-<xxxx>

1.5.1 ACPI Core Subsystem
The ACPI Core Subsystem supplies the major building blocks or subcomponents that are required
for all ACPI implementations — including an AML interpreter, a namespace manager, ACPI event
and resource management, and ACPI hardware support.

One of the goals of the Core Subsystem is to provide an abstraction level high enough such that the
OSL does not need to understand or know about the very low-level ACPI details. For example, all
AML code is hidden from the OSL and host operating system. Also, the details of the ACPI
hardware are abstracted to higher-level software interfaces.

The Core Subsystem implementation makes no assumptions about the host operating system or
environment. The only way it can request operating system services is via interfaces provided by the
OS Services Layer.

The primary user of the services provided by the ACPI Core Subsystem is the OS Services Layer,
since it is the OS Services Layer that provides an external interface appropriate for the host
operating system. For example, the ACPI subsystem may be packaged as a device driver and the
OSL then provides the external OS-defined device driver interfaces that the rest of the OS uses to
communicate to the ACPI subsystem.

1.5.2 Operating System Services Layer
The OS Services Layer (or OSL) operates as a bi-directional translation service for both requests
from the host OS to the ACPI subsystem, and from the ACPI subsystem to the host OS. These two
functions are independent of each other in many ways. In one direction, the OSL translates host OS
requests from the native format into one or more calls to the ACPI Core Subsystem. In the other
direction, the OSL implements a generic set of OS service interfaces by using the primitives
available from the host OS.

Because of its nature, the OS Services Layer must be implemented anew for each supported host
operating system. There is a single ACPI Core Subsystem, but there must be an OS Services Layer
for each operating system supported by the ACPI component architecture.

The primary function of the OSL in the ACPI Component Architecture is to be the small glue layer
that binds the much larger Core Subsystem to the host operating system. Because of the nature of
ACPI itself — such as the requirement for an AML interpreter and management of a large
namespace data structure — most of the implementation of the specification is independent of any
operating system services. Therefore, the Core Subsystem is the larger of the two components.

The overall ACPI Component Architecture in relation to the host operating system is diagrammed
below.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 15

Figure 2. ACPI Subsystem Architecture

OS Services Layer

ACPI Core Subsystem

Host Operating System

ACPI Subsystem Module

1.5.3 Relationships Between the Host OS, Core Subsystem, and
OSL

1.5.3.1 Host Operating System Interaction
The Host Operating System makes requests to the ACPI subsystem using the interfaces that are
defined between the OSL component and the Host OS. The host typically does not make calls
directly to the Core Subsystem component because the Acpi* interfaces are typically too low-level
for the host. Also, the direct call interface to the Core Subsystem is probably not appropriate for the
host-to-OSL interface — a device driver interface is far more likely to be used instead. In this sense,
the OSL component acts as a “wrapper” for the Core Subsystem component.

The OSL component “calls up” to the host operating system whenever operating system services are
required, either for the OSL itself, or on behalf of the Core Subsystem component. All native calls
directly to the host are confined to the OS Services Layer, for obvious reasons.

1.5.3.2 OS Services Layer Interaction
The OS Services Layer implements two types of interfaces, one for each of two distinct callers:

• The Host OS interface is the only external (public) interface from the host OS into the ACPI
subsystem. The mechanism used to implement this interface can be whatever is appropriate
for the host OS — such as a device driver or internal subsystem interface. The OSL-host OS
interface receives ACPI requests from the operating system and translates them into one or
more requests to the Core Subsystem component. Therefore, the OSL calls the Core
Subsystem to implement the host OS interface.

ACPI Component Architecture Programmer Reference
R

16 Ref No SC-<xxxx>

• The AcpiOs* interfaces provide common operating system services to the Core Subsystem
such as memory allocation, mutual exclusion, hardware access, and I/O. The Core Subsystem
component uses these interface to gain access to OS services in an OS-independent manner.
Therefore, the OSL component makes calls to the host operating system to implement the
AcpiOs * interface.

1.5.3.3 ACPI Core Subsystem Interaction

The ACPI Core Subsystem implements a single type of interface:

• The Acpi* interfaces provide the actual ACPI services. When operating system services are
required during the servicing of an ACPI request, the Core Subsystem makes requests to the
host OS indirectly via the fixed AcpiOs* interfaces.

The diagram below illustrates the relationships and interaction between the various architectural
elements by showing the flow of control between them. Note that the host never calls the Core
Subsystem directly — it accesses services that are provided by the OSL. Also, the Core Subsystem
never calls the host directly — instead it makes calls to the AcpiOs * interfaces in the OSL. It is this
level of indirection in both directions that allows the Core Subsystem to be truly operating system
independent.

Figure 3. Interaction between the Architectural Components

Core Subsystem
OS Services Layer

Implements
Acpi*

Interfaces

Implements
AcpiOs*
Interfaces

Implements
Host OS
Interface

Host

Operating

System

ACPI Subsystem Module

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 17

1.6 Architecture of the ACPI Core Subsystem
The Core Subsystem is divided into several logical modules or sub-components. Each module
implements a service or group of related services. This section describes each sub-component and
identifies the classes of external interfaces to the components, the mapping of these classes to the
individual components, and the interface names.

These ACPI modules are the OS-independent parts of an ACPI implementation that can share
common code across all operating systems. These modules are delivered in source code form (the
language used is ANSI C), and can be compiled and integrated into an OS-specific ACPI driver or
subsystem (or whatever packaging is appropriate for the host OS.)

The diagram below shows the various internal modules of the ACPI Core Subsystem and their
relationship to each other. The AML interpreter forms the foundation of the component, with
additional services built upon this foundation.

Figure 4. Internal Modules of the ACPI Core Subsystem

ACPI Table
Management

Event
Management

ACPI H/W
Management

Resource
Management

AML Interpreter

Namespace
Management

1.6.1 AML Interpreter
The AML interpreter is responsible for the parsing and execution of the AML byte code that is
provided by the computer system vendor. Most of the other services are built upon the AML
interpreter. Therefore, there are no direct external interfaces to the interpreter. The services that the
interpreter provides to the other services include:

• AML Control Method Execution

• Evaluation of Namespace Objects

1.6.2 ACPI Table Management
This component manages the ACPI tables such as the RSDT, FADT, FACS, DSDT, etc. The tables
may be loaded from the firmware or directly from a buffer provided by the host operating system.
Services include:

• ACPI Table Parsing

• ACPI Table Verification

ACPI Component Architecture Programmer Reference
R

18 Ref No SC-<xxxx>

• ACPI Table installation and removal

1.6.3 Namespace Management
The Namespace component provides ACPI namespace services on top of the AML interpreter. It
builds and manages the internal ACPI namespace. Services include:

• Namespace Initialization from either the BIOS or a file

• Device Enumeration

• Namespace Access

• Access to ACPI data and tables

1.6.4 Resource Management
The Resource component provides resource query and configuration services on top of the
Namespace manager and AML interpreter. Services include:

• Getting and Setting Current Resources

• Getting Possible Resources

• Getting IRQ Routing Tables

• Getting Power Dependencies

1.6.5 ACPI Hardware Management
The hardware manager controls access to the ACPI registers, timers, and other ACPI-related
hardware. Services include:

• ACPI Status register and Enable register access

• ACPI Register access (generic read and write)

• Power Management Timer access

• Legacy Mode support

• Global Lock support

• Sleep Transitions support (S-states)

• Processor Power State support (C-states)

• Other hardware integration: Throttling, Processor Performance, etc.

1.6.6 Event Handling
The Event Handling component manages the ACPI System Control Interrupt (SCI). The single SCI
multiplexes the ACPI timer, Fixed Events, and General Purpose Events (GPEs). This component
also manages dispatch of notification and Address Space/Operation Region events. Services
include:

• ACPI mode enable/disable

• ACPI event enable/disable

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 19

• Fixed Event Handlers (Installation, removal, and dispatch)

• General Purpose Event (GPE) Handlers (Installation , removal, and dispatch)

• Notify Handlers (Installation, removal, and dispatch)

• Address Space and Operation Region Handlers (Installation, removal, and dispatch)

1.7 Architecture of the OS Services Layer (OSL)
The OS Services Layer component of the architecture enables the rehosting or retargeting of the
other components to execute under different operating systems, or to even execute in environments
where there is no host operating system. In other words, the OSL component provides the glue that
joins the other components to a particular operating system and/or environment. The OSL
implements interfaces and services using the system calls and utilities that are available from the
host OS. Therefore, an OS Services Layer must be written for each target operating system.

The OS Services Layer has several roles.

1. It acts as the front-end for OS-to-ACPI requests. It translates OS requests that are received in
the native OS format (such as a system call interface, an I/O request/result segment interface,
or a device driver interface) into calls to Core Subsystem interfaces.

2. It exposes a set of OS-specific application interfaces. These interfaces translate application
requests to calls to the ACPI interfaces

3. The OSL component implements a standard set of interfaces that perform OS dependent
functions (such as memory allocation and hardware access) on behalf of the Core Subsystem
component. These interfaces are themselves OS-independent because they are constant across
all OSL implementations. It is the implementations of these interfaces that are OS-dependent,
because they must use the native services and interfaces of the host operating system.

1.7.1 Functional Service Groups
The services provided by the OS Services Layer can be categorized into several distinct groups,
mostly based upon when each of the services in the group are required. There will be boot time
functions, device load time functions, run time functions, and asynchronous functions.

The OS Services Layer exposes these services to the software above it via interfaces that can be
used by the host operating system, device drivers, and applications. These interfaces are not defined
by this document because they are highly dependent on the host OS. For example, if the OSL and
ACPI Core Subsystems are bundled together to form an ACPI device driver, the interfaces to the
driver may be in the form of IOCTL requests or some other form of I/O request block. On the other
hand, if the ACPI subsystem is integrated into the host operating system as a standard OS
subsystem, the interfaces to the OS Services Layer may take the form of a more conventional
system call interface, or even simply a local procedure call interface.

Although it is the OS Services Layer that exposes these services to the rest of the operating system,
it is very important to note that the OS Services Layer makes use of the services of the lower-level
ACPI Core Subsystem to implement its services. It is the intent of the component architecture that
the Core Subsystem is a service that is private to the OSL — that is, that only the OSL makes calls
to the Core Subsystem.

ACPI Component Architecture Programmer Reference
R

20 Ref No SC-<xxxx>

1.7.1.1 OS Bootload-Time Services
Boot services are those functions that must be executed very early in the OS load process, before
most of the rest of the OS initializes. These services include the ACPI subsystem initialization,
ACPI hardware initialization, and execution of the _INI control methods for various devices within
the ACPI namespace.

1.7.1.2 Device Driver Load-Time Services

For the devices that appear in the ACPI namespace, the operating system must have a mechanism to
detect them and load device drivers for them. The Device driver load services provide this
mechanism. The ACPI subsystem provides services to assist with device and bus enumeration,
resource detection, and setting device resources.

1.7.1.3 OS Run-Time Services

The runtime services include most if not all of the external interfaces to the ACPI subsystem. These
services also include event logging and power management functions.

1.7.1.4 Asynchronous Services

The asynchronous functions include interrupt servicing (System Control Interrupt), Event handling
and dispatch (Fixed events, General Purpose Events, Notification events, and Operation Region
access events), and error handling.

1.7.2 Required Functionality
There are three basic functions of the OS Services Layer:

1. Manage the initialization of the entire ACPI subsystem, including both the OSL and ACPI
Core Subsystems.

2. Translate requests for ACPI services from the host operating system (and its applications) into
calls to the Core Subsystem component. This is not necessarily a one-to-one mapping. Very
often, a single operating system request may be translated into many calls into the ACPI Core
Subsystem.

3. Implement an interface layer that the Core Subsystem component uses to obtain operating
system services. These standard interfaces (defined in this document as the AcpiOs*
interfaces) include functions such as memory management and thread scheduling, and must
be implemented using the available services of the host operating system.

This section discusses the services and interfaces that the OS Services Layer is required to provide.
Only the external definition of these interfaces is clearly defined by this document. The actual
implementation of the services and interfaces is OS dependent and may be very different for
different operating systems.

1.7.2.1 Requests from OS to ACPI Subsystem

OS to ACPI requests are by their nature very dependent upon the structure of the operating system.
For example, the data format the OS requires to maintain resources will vary greatly from OS to OS.
One of the roles of the OS Services Layer is to translate native operating system ACPI requests into
calls to the ACPI Core Subsystem. For example, the OS Services Layer must translate the ACPI
resource structure to the native OS resource structure.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 21

The exact ACPI services required (and the requests made to those services) will vary from OS to
OS. However, it can be expected that most OS requests will fit into the broad categories of the
functional service groups described earlier: boot time functions, device load time functions, and
runtime functions.

The flow of OS to ACPI requests is shown in the diagram below.

Figure 5. Operating System to ACPI Subsystem Request Flow

ACPI Subsystem

OS Services Layer

ACPI Core Subsystem

Requests From Host OS

1.7.2.2 Requests from Application to ACPI Subsystem
Application level interfaces should be provided in the OS Services Layer to enable the creation of
user interfaces for configuration and management of the ACPI system by either the OS vendor or
third party software vendors.

The application interfaces must include sufficient functionality that an application will be able to
present to the user a clear picture of the ACPI namespace including the interdependencies for
enumeration, power, and data.

The type and style of these application interfaces is completely dependent on the architecture of the
host operating system and where the ACPI subsystem fits into that architecture. The interfaces may
be device driver style interfaces, or system calls into an operating system layer.

1.7.2.3 Requests from ACPI Subsystem to OS
ACPI to OS requests are requests for OS services made by the ACPI subsystem. These requests
must be serviced (and therefore implemented) in a manner that is appropriate to the host operating
system. These requests include calls for OS dependent functions such as I/O, resource allocation,
error logging, and user interaction. The ACPI Component Architecture defines interfaces to the OS

ACPI Component Architecture Programmer Reference
R

22 Ref No SC-<xxxx>

Services Layer for this purpose. These interfaces are constant (i.e. they are OS-independent), but
they must be implemented uniquely for each target OS.

The flow of ACPI to OS requests is shown in the diagram below.

Figure 6. ACPI Subsystem to Operating System Request Flow

ACPI Subsystem

OS Services Layer

ACPI Core Subsystem

Requests To Host OS

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 23

2 Design Overview
This section contains information about concepts, data types, and data structures that are common to
both the Core Subsystem and OSL components of the ACPI Subsystem.

2.1 ACPI Namespace Fundamentals
The ACPI Namespace is a large data structure that is constructed and maintained by the Core
Subsystem component. Constructed primarily from the AML defined within an ACPI Differentiated
System Description Table (DSDT), the namespace contains a hierarchy of named ACPI objects.

2.1.1 Named Objects
Each object in the namespace has a fixed 4-character name (32-bits) associated with it. The root
object is referenced by the backslash as the first character in a pathname. Pathnames are constructed
by concatenating multiple 4-character object names with a period as the name separator.

2.1.2 Scopes
The concept of an object scope relates directly to the original source ASL that describes and defines
an object. An object’s scope is defined as all objects that appear between the pair of open and close
brackets immediately after the object. In other words, the scope of an object is the container for all
of the children of that object.

In some of the ACPI CA interfaces, it is convenient to define a scope parameter that is meant to
represent this container. For example, when converting an ACPI name into an object handle, the two
parameters required to resolve the name are the name itself, and a containing scope where the name
can be found. When the object that matches the name is found within the scope, a handle to that
object can be returned.

Example Scopes, Names, and Objects:

In the ASL code below, the scope of the object _GPE contains the objects _L08 and _L0A.

Scope (_GPE)
{

Method (_L08)
{

Notify (_SB.PCI0.DOCK, 1)
}
Method (_L0A)
{

Store (0, _SB.PCI0.ISA.EC0.DCS)
}

}

In this example, there are three ACPI namespace objects, about which we can observe the
following:

• The names of the three objects are _GPE, _L08, and _L0A.

• The child objects of parent object _GPE are _L08 and _L0A.

• The absolute pathname (or fully qualified pathname) of object _L08 is “_GPE._L08”.

ACPI Component Architecture Programmer Reference
R

24 Ref No SC-<xxxx>

• The scope of object _GPE contains both the _L08 and _L0A objects.

• The objects _L08 and _L0A have no scope associated with them in the internal namespace
since they do not define any child objects.

• The containing scope of object _L08 is the scope owned by the object _GPE.

• The parent of both objects _L08 and _L0A is object _GPE.

• The type of both objects _L08 and _L0A is ACPI_TYPE_METHOD.

• The next object after object _L08 is object _L0A. In the example _GPE scope, there are no
additional objects after object _L0A.

• Since _GPE is a namespace object at the root level (as indicated by the preceding backslash
in the name), its parent is the root object, and its containing scope is the root scope.

2.1.3 Predefined Objects
During initialization of the internal namespace within Core Subsystem component, there are several
predefined objects that are always created and installed in the namespace, regardless of whether they
appear in any of the loaded ACPI tables. These objects and their associated types are shown below.
"_GPE", ACPI_TYPE_ANY // General Purpose Event block
"_PR_", ACPI_TYPE_ANY // Processor block
"_SB_", ACPI_TYPE_ANY // System Bus block
"_SI_", ACPI_TYPE_ANY // System Indicators block
"_TZ_", ACPI_TYPE_ANY // Thermal Zone block
"_REV", ACPI_TYPE_NUMBER // Revision
"_OS_", ACPI_TYPE_STRING // OS Name
"_GL_", ACPI_TYPE_MUTEX // Global Lock

2.1.4 Logical Namespace Layout
The diagram below shows the logical namespace after the predefined objects and the _GPE scope
has been entered.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 25

Figure 7. Internal Namespace Structure

_L08

_L0A

_GPE

PR

SB

SI

TZ

_REV

OS

GL

\

ACPI_ROOT_OBJECT

_GPE Scope

ACPI_ROOT_SCOPE

2.2 Execution Model

2.2.1 Initialization
The initialization of the ACPI Core Subsystem must be driven entirely by the OS Services Layer.
Since it may be appropriate (depending on the requirements of the host OS) to initialize different
parts of the Core Subsystem at different times, the Core Subsystem initialization is a multi-step
process that must be coordinated by the OSL. The four main steps are outlined below.

1. Perform a global initialization of the Core Subsystem – this initializes the global data and
other items within the Core Subsystem.

2. Load the ACPI tables – The FACS, FADT, DSDT, etc. must be copied (or mapped) into the
Core Subsystem before the internal namespace can be constructed. The tables may be loaded
from the firmware, loaded from an input buffer, or some combination of both. The minimum
set of ACPI tables includes an FACS, an FADT, and a DSDT.

3. Build the internal namespace – this causes the Core Subsystem to parse the DSDT and build
an internal namespace from the objects found therein.

4. Enable ACPI mode of the machine. Before ACPI events can occur, the machine must be put
into ACPI mode. The Core Subsystem installs an interrupt handler for the System Control
Interrupts (SCIs), and transitions the hardware from legacy mode to ACPI mode.

2.2.2 Memory Allocation
There are two models of memory allocation that can be used. In the first model, the caller to the
ACPI subsystem pre-allocates any required memory. This allows maximum flexibility for the caller

ACPI Component Architecture Programmer Reference
R

26 Ref No SC-<xxxx>

since only the caller knows what is the appropriate memory pool to allocate from, whether to
statically or dynamically allocate the memory, etc. In the second model, the caller can choose to
have the ACPI subsystem allocate memory via the AcpiOsAllocate interface. Although this model is
less flexible, it is far easier to use and is sufficient for most environments.

Each memory allocation model is described below.

2.2.2.1 Caller Allocates All Buffers

In this model, the caller preallocates buffers of a large enough size and posts them to the ACPI
subsystem via the ACPI_BUFFER data type.

It is often the case that the required buffer size is not known by even the ACPI subsystem until after
the evaluation of an object or the execution of a control method has been completed. Therefore, the
“get size” model of a separate interface to obtain the required buffer size is insufficient. Instead, a
model that allows the caller to pre-post a buffer of a large enough size has been chosen. This model
is described below.

For ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol can be used to determine the exact buffer size required:

1. Set the buffer length field of the ACPI_BUFFER structure to zero, or to the size of a local
buffer that is thought to be large enough for the data.

2. Call the Acpi interface.

3. If the return exception code is AE_BUFFER_OVERFLOW, the buffer length field has been
set by the interface to the buffer length that is actually required.

4. Allocate a buffer of this length and initialize the length and buffer pointer field of the
ACPI_BUFFER structure.

5. Call the Acpi interface again with this valid buffer of the required length.

Alternately, if the caller has some idea of the buffer size required, a buffer can be posted in the
original call. If this call fails, only then is a larger buffer allocated. See Section 4.2.6 -
“ACPI_BUFFER – Input and Output Memory Buffers” for additional discussion on using the
ACPI_BUFFER data type.

2.2.2.2 ACPI Allocates Return Buffers

In this model, the caller lets the ACPI subsystem allocate return buffers. It is the responsibility of
the caller to delete these returned buffers.

For the ACPI interfaces that use the ACPI_BUFFER data type as an output parameter, the following
protocol is used to allow the ACPI subsystem to allocate return buffers:

1. Set the buffer length field of the ACPI_BUFFER structure ACPI_ALLOCATE_BUFFER.

2. Call the Acpi interface.

3. If the return exception code is AE_OK, the interface completed successfully and a buffer was
allocated. The length of the buffer is contained in the ACPI_BUFFER structure.

4. Delete the buffer by calling AcpiOsFree with the pointer contained in the ACPI_BUFFER
structure.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 27

2.2.3 Parameter Validation
Only limited parameter validation is performed on all input parameters passed to the ACPI Core
Subsystem. All calls to the Core Subsystem code should come from the OSL portion, not directly
from user or application code. Therefore, the OSL code is a trusted portion of the kernel code, and
should perform all limit and range checks on buffer pointers, strings, and other input parameters
before passing them down to the Core Subsystem code.

The limited parameter validation consists of sanity checking input parameters for non-zero values
and nothing more. Any additional parameter validation (such as buffer length validation) must occur
in the OSL component.

2.2.4 Exception Handling
All exceptions that occur during the processing of a request to the ACPI Core Subsystem are
translated into the appropriate ACPI_STATUS return code and bubbled up to the original caller.

All exception handling is performed inline by the caller to the Core Subsystem interfaces. There are
no exception handlers associated with either the Acpi* or AcpiOs* calls.

2.2.5 Multitasking and Reentrancy
All components of the ACPI subsystem are intended to be fully reentrant and support multiple
threads of execution. To achieve this, there are several mutual exclusion OSL interfaces that must be
properly implemented with the native host OS primitives to ensure that mutual exclusion and
synchronization can be performed correctly. Although dependent on the correct implementation of
these interfaces, the ACPI Core Subsystem is otherwise fully reentrant and supports multiple threads
throughout the component, with the exception of the AML interpreter, as explained below.

Because of the constraints of the ACPI specification, there is a major limitation on the concurrency
that can be achieved within the AML interpreter portion of the subsystem. The specification states
that at most one control method can be actually executing AML code at any given time. If a control
method blocks (an event that can occur only under a few limited conditions), another method may
begin execution. However, it can be said that the specification precludes the concurrent execution of
control methods. Therefore, the AML interpreter itself is essentially a single-threaded component of
the ACPI subsystem. Serialization of both internal and external requests for execution of control
methods is performed and managed by the front-end of the interpreter.

2.2.6 Event Handling
The term Event Handling is used somewhat loosely to describe the class of asynchronous events that
can occur during the execution of the ACPI subsystem. These events include:

• System Control Interrupts (SCIs) that are generated by both the ACPI Fixed and General
Purpose Events.

• Notify events that are generated via the execution of the ASL Notify keyword in a control
method.

• Events that are caused by accesses to an address space or operation region during the
execution of a control method.

ACPI Component Architecture Programmer Reference
R

28 Ref No SC-<xxxx>

Each of these events and the support for them in the ACPI subsystem are described in more detail
below.

2.2.6.1 Fixed Events

Incoming Fixed Events can be handled by the default ACPI subsystem event handlers, or individual
handlers can be installed for each event. Only device drivers or system services should install such
handlers.

2.2.6.2 General Purpose Events
Incoming General Purpose Events (GPEs) are usually handled by executing a control method that is
associated with a particular GPE. According to the ACPI specification, each GPE level may have a
method associated with it whose name is of the form _Txx, where T is the type of GPE — either E
for edge-triggered or L for level triggered. xx is the GPE level in hexadecimal (See the ACPI
specification for complete details.) This control method is never executed in the context of the SCI
interrupt handler, but is instead queued for later execution by the host operating system.

In addition to this mechanism, individual handlers for GPE levels may be installed. It is not required
that a handler be installed for a GPE level, and in fact, currently the only device that requires a
dedicated GPE handler is the ACPI Embedded Controller. A device driver for the Embedded
Controller would install a handler for the GPE that is dedicated to the EC.

If a GPE handler is installed for a given GPE, the handler is invoked first, then the associated
control method (if any) is queued for execution.

GPE Block Devices are also supported. These GPE blocks may be installed and removed
dynamically as necessary. The Core Subsystem provides centralized GPE handling and dispatch,
and provides the necessary interfaces to install and remove GPE Block Devices.

2.2.6.3 Notify Events

An ACPI Notify Event occurs as a result of the execution of a Notify opcode during the execution of
a control method. A notify event occurs on a particular ACPI object, and this object must be a
device or thermal zone. If a handler is installed for notifications on a particular device, this handler
is invoked during the execution of the Notify opcode, in the context of the thread that is executing
the control method.

Notify handlers should be installed by device drivers and other system services that know about the
particular device or thermal zone on which notifications will be received.

2.2.7 Address Spaces and Operation Regions
ASL source code and the corresponding AML code use the Address Space mechanism to access
data that is out of the direct scope of the ASL. For example, Address Spaces are used to access the
CMOS RAM and the ACPI Embedded Controller. There are several pre-defined Address Spaces
that may be accessed and user-defined Address Spaces are allowed.

The Operating System software (which includes the AML Interpreter) allows access to the various
address spaces via the ASL Operation Region (OpRegion) construct. An OpRegion is a named
window into an address space. During the creation of an OpRegion, the ASL programmer defines
both the boundaries (window size) and the address space to be accessed by the OpRegion. Specific
addresses within the access window can then be defined as named fields to simplify their use.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 29

The AML Interpreter is responsible for translating ASL/AML references to named Fields into
accesses to the appropriate Address Space. The interpreter resolves locations within an address
space using the fields’ address within an OpRegion and then the OpRegion’s offset within the
address space. The resolved address, address access width, and function (read or write) are then
passed to the address space handler who is responsible for performing the actual physical access of
the address space.

2.2.7.1 Installation of Address Space Handlers

At runtime, the ASL/AML code cannot access an address space until a handler has been installed for
that address space. An ACPI CA user can either install the default address space handlers or install
user defined address space handlers using the AcpiInstallAddressSpaceHandler interface.

Each Address Space is “owned” by a particular device such that all references to that address space
within the scope of the device will be handled by that devices address space handler. This
mechanism allows multiple address space/operation region handlers to be installed for the same type
of address space, each mutually exclusive by virtue of being governed by the ACPI address space
scoping rules. For example, picture a platform with two SMBus devices, one an embedded
controller based SMBus; the other a PCI based SMBus. Each SMBus must expose its own address
space to the ASL without disrupting the function of the other. In this case, there may be two device
drivers and two distinctly different address space handlers, one for each type of SMBus. This
mechanism can be employed in a similar manner for the other predefined address spaces. For
example, the PCI Configuration space for each PCI bus is unique to that bus. Creation of a region
within the scope of a PCI bus must refer only to that bus.

Address space handlers must be installed on a named object in the ACPI namespace or on the
special object ACPI_ROOT_OBJECT. This is required to maintain the scoping rules of address
space access. Address handlers are installed for the namespace object representing the device that
“owns” that address space. Per ASL rules, regions that access that address space must be declared in
the ASL within the scope of that namespace object.

It is the responsibility of the ACPI CA user to enumerate the namespace and install address handlers
as needed.

2.2.7.2 ACPI-Defined Address Spaces

The ACPI 2.0b specification defines address spaces for:
• System Memory

• System I/O

• PCI Configuration Space

• System Management Bus (SMBus)

• Embedded Controller

• CMOS

• PCI Bar Target

The ACPI CA subsystem implements default address space handlers for the following ACPI defined
address spaces:

• System Memory

• System I/O

• PCI Configuration Space

ACPI Component Architecture Programmer Reference
R

30 Ref No SC-<xxxx>

Default address space handlers can be installed by supplying the special value
ACPI_DEFAULT_HANDLER as the handler address when calling the
AcpiInstallAddressSpaceHandler interface.

The other predefined address spaces (Embedded Controller and SMBus) have no default handlers
and will not be accessible without OS provided handlers. This is typically the role of the Embedded
Controller and SMBus device drivers.

2.3 Policies and Philosophies
This section provides insight into the policies and philosophies that were used during the design and
implementation of the ACPI CA Core Subsystem. Many of these policies are a direct interpretation
of the ACPI specification. Others are a direct or indirect result of policies and procedures dictated
by the ACPI specification. Still others are simply standards that have been agreed upon during the
design of the subsystem.

2.3.1 External Interfaces

2.3.1.1 Exception Codes
All external interfaces (Acpi*) return an exception code as the function return. Any other return
values are returned via pointer(s) passed as parameters. This provides a consistent and simple
synchronous exception-handling model.

Since the ACPI CA Core Subsystem is reentrant and supports multiple threads on multiple operating
systems, a model where an exception code is stored in the task descriptor (such as the errno
mechanism) was purposefully avoided to improve portability.

2.3.1.2 Memory Buffers
Memory for return objects, buffers, etc. that is returned via the external interfaces is rarely allocated
by the subsystem itself. The model chosen is to force the caller to always pre-allocate memory. This
forces the calling software to manage both the creation and deletion of its own buffers — hopefully
minimizing memory fragmentation and avoiding memory leaks. The exception to this is the
ACPI_BUFFER type, where the caller can direct the ACPI subsystem to allocate return buffers.

2.3.2 Subsystem Initialization

2.3.2.1 ACPI Table Validation
All ACPI tables that are examined by the ACPI core subsystem undergo some minimal validation
before they are accepted. This includes all tables found in the RSDT regardless of whether the
signature is recognized, and all tables loaded from user buffers. The following validations are
performed on each table. A warning is issued for tables that do not pass one or more of these tests:

1. The Table pointer must point to valid physical memory

2. The signature (in the table header) must be 4 ASCII chars, even if the name is not recognized.

3. The table must be readable for length specified in the header

4. The table checksum must be valid (with the exception of the FACS, which has no checksum).

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 31

Other than this validation, tables that are not recognized by their table header signature are simply
ignored.

2.3.2.2 Required ACPI Tables

At the very minimum, the ACPI CA Core Subsystem requires the following ACPI tables:

1. One Fixed ACPI Description Table (FADT — signature “FACP”). This table contains
important configuration information about the ACPI hardware

2. One Firmware ACPI Control Structure (FACS). This table contains the OS-to-firmware
interface including the firmware waking vector and the Global Lock.

3. One Differentiated System Description Table (DSDT). This table contains the primary AML
code for the system.

ACPI Component Architecture Programmer Reference
R

32 Ref No SC-<xxxx>

3 Design and Implementation Details
3.1 Required Host OS Initialization Sequence

This section describes a generic operating system initialization sequence that includes the ACPI CA
subsystem. The ACPI CA subsystem must be loaded very early in the kernel initialization. In fact,
ACPI support must be considered to be one of the fundamental startup modules of the kernel. The
basic OS requirements of the ACPI subsystem include memory management, synchronization
primitives, and interrupt support. As soon as these services are available, ACPI CA should be
initialized. Only after ACPI is available can motherboard device enumeration and configuration
begin.

In summary, ACPI Tables are descriptions of the hardware, therefore must be loaded into the OS
very early.

3.1.1 Bootload and Low Level Kernel Initialization
• OS is loaded into memory via bootloader or downloader

• Initialize OS data structures, objects and run-time environment

• Initialize low-level kernel subsystems

• Initialize and enable free space manager

• Initialize and enable synchronization primitives

• Initialize basic interrupt mechanism and hardware

• Initialize and start system timer

3.1.2 ACPI CA Subsystem Initialization
• Load ACPI Tables

• Initialize Namespace

• Initialize ACPI Hardware and install SCI interrupt handler

• Initialize ACPI Address Spaces (Default handlers and user handlers)

• Initialize ACPI Objects (_STA, _INI, _HID)

• Find PCI Root Bus(es) and install PCI config space handlers

3.1.3 Other OS Initialization
• Remaining non-ACPI Kernel initialization

• Initialize and start System Resource Manager

• Determine processor configuration

3.1.4 Device Enumeration, Configuration, and Initialization
• Match motherboard devices to drivers via _HID

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 33

• Initialize PCI subsystem: Obtain _PRT interrupt routing table and Initialize PCI routing. PCI
driver enumerates PCI bus and loads appropriate drivers.

• Initialize Embedded Controller support/driver

• Initialize SM Bus support/driver

• Load and initialize drivers for any other motherboard devices

3.1.5 Final OS Initialization
• Load and initialize any remaining device drivers

• Initialize upper layers of the OS

• Activate user interface

3.2 Required ACPI CA Initialization Sequence
This section presents a detailed description of the initialization process for the ACPI CA subsystem.
The initialization interfaces are provided at a sufficient granularity to allow customization of the
initialization sequence for each host operating system and host environment.

3.2.1 ACPI CA Subsystem Initialization

3.2.1.1 AcpiInitializeSubsystem
This mandatory step must be first. It initializes the ACPI CA Subsystem software, including all
global variables, tables, and data structures. All elements of the ACPI CA Subsystem are initialized,
including the OSL interface layer and the OSPM layer. The interface provided is
AcpiInitializeSubsystem.

3.2.2 ACPI Table and Namespace Initialization
This required phase loads the ACPI tables from the BIOS or elsewhere and initializes the internal
ACPI namespace.

3.2.2.1 AcpiLoadFirmwareTables

This interface finds and loads all ACPI tables that are presented to the system by the resident
firmware. This is the normal interface used to obtain the ACPI tables on an ACPI-supported
platform.

3.2.2.2 AcpiLoadTable

This interface is used to directly load ACPI tables from somewhere (anywhere) other than the BIOS.
The table is transferred to the ACPI subsystem via a memory buffer. The AcpiExec utility uses this
interface to load ACPI tables from a file.

ACPI Component Architecture Programmer Reference
R

34 Ref No SC-<xxxx>

3.2.2.3 Internal ACPI Namespace Initialization
As the various ACPI tables are loaded (installed into the internal data structures of the CA
subsystem), the internal ACPI Namespace (database of named ACPI objects) is constructed from
those tables. As each table is loaded, the following tasks are automatically performed:

• First pass parse – Load all named ACPI objects into the internal namespace

• Second pass parse – Resolve all forward references within the ACPI table

• First pass parse of all control methods – Sanity check to ensure that the tables can be
completely parsed, including the control methods. The resulting parse tree is not stored, since
control methods are parsed on the fly every time they are executed. (This task represents
minimal CPU overhead, and saves huge amounts of memory that would be consumed by
storing parse trees.)

• Lock the namespace so that GPEs will not cause control methods to run

3.2.3 Handler Installation
Once the namespace has been constructed, the OS should install any handlers that it may require
during execution of the ACPI CA subsystem. The purpose of installing these handlers at this point
in the initialization process is so that the handlers are in place before execution of any control
methods is allowed – thereby insuring that any custom handlers will not miss any of the events that
they are intended to handle. Any handlers installed in this phase will override the default handlers.

3.2.3.1 Handler Types

The following handler installation interfaces are available

AcpiInstallAddressSpaceHandler

This function is used to install address space handlers to override the default address space
handlers (for the predefined address spaces) or install handlers for custom address spaces.

AcpiInstallFixedEventHandler

This function is used to install handlers for ACPI Fixed Events.

AcpiInstallGpeHandler

This function is used to install handlers for ACPI General Purpose Events (GPEs).

AcpiInstallNotifyHandler

This function is used to install handlers for ACPI device notifications.

3.2.4 Subsystem Initialization Completion

3.2.4.1 AcpiEnableSubsystem

This single interface performs the functions described in the sections below. To summarize the
actions performed by this call:

• Initialize ACPI hardware and ACPI events

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 35

• Enter ACPI Mode

• Initialize ACPI device objects

• Install handlers for the PCI Root Bridge(s)

• Initialize all Operation Regions (Address Spaces) and Fields

3.2.4.2 ACPI Hardware and Event Initialization

This step sets up the ACPI hardware, initializes the ACPI Event handling, and puts the system into
ACPI mode if necessary. This step is optional when running in “hardware-independent” mode –
when there is no access to hardware by the ACPI subsystem (For example, the AcpiDump and
AcpiExec utilities run in this mode.)

The ACPI hardware must be initialized and an SCI interrupt handler must be installed before it is
architecturally safe to evaluate ACPI objects and execute control methods, for the following
reasons:

1. Any ACPI named object (predefined or otherwise) can be implemented as a control method
and there is no way to safely make any assumptions about which objects are and are not
implemented as control methods. This is dependent on the individual AML on each platform.

2. Because control methods can access the ACPI hardware, cause SCIs, and most interesting of
all, can block while waiting for an SCI to be serviced, it is inherently unsafe and
architecturally incorrect to attempt to execute control methods without first initializing the
hardware and installing an SCI interrupt handler

This step is only optional when running in “hardware-independent” mode. Otherwise it is required
to setup the ACPI hardware and System Control Interrupt handling. ACPI mode is entered if the
machine is in legacy mode. IF the machine is already in ACPI mode (such as an IA-64 machine), no
action is required.

• Initialize the ACPI hardware

• Initialize the SCI, GPE, and FixedEvent handling

• Enter ACPI mode

After this step, control methods can be executed because the hardware is now initialized and the
subsystem is able to take ACPI-related interrupts (System Control Interrupts or SCIs). The
execution of any control method (including the _REG methods) can cause the generation of an SCI
– therefore, the hardware must be initialized before control methods may be run. Additional ACPI
subsystem initialization that requires control method execution can now be completed.

3.2.4.3 Just-in-time Address Space Initialization

This phase includes just-in-time initialization for any Operation Regions, Packages, Buffers, or
Fields that are accessed by the control methods executed here. For example, if a _REG method for a
PCIConfig address space accesses a SystemMemory Operation Region, the definition of that
particular SystemMemory region is fully evaluated at that time. (Operation Regions and CreateField
ASL statements can contain executable AML code and therefore the initialization of the objects
must be deferred until the CA subsystem and ACPI hardware are both initialized).

Therefore, Address Spaces are initialized in the order in which they are accessed, not in the order
that they are declared in the ASL source code.

When any Address Space is initialized, the associated _REG method (if any) is executed as well.

ACPI Component Architecture Programmer Reference
R

36 Ref No SC-<xxxx>

3.2.4.4 AcpiIntializeObjects

3.2.4.4.1 ACPI Device Initialization

This step initializes device objects found within the ACPI namespace. The PCI configuration space
handlers are setup in this phase. Note: The initialization of the device objects entails running the
_INI method on all devices that are present as indicated by the _STA method. This is not an actual
initialization of the device hardware – this is left to the actual device drivers for the hardware.

The _STA, _INI, and _HID methods are run on all ACPI objects of type Device found within the
namespace (that are ready and available.)

Traverse the entire namespace and run these methods on each and every device found within: _STA,
_INI, _HID (in this order.) Any operation regions accessed by these methods will be automatically
initialized by the just-in-time address space initialization mechanism.

If the _HID method indicates the presence of a PCI Root Bridge (if it returns an HID value of
PNP0A03), perform PCI Configuration Space initialization on the bridge. Install the PCI address
space handler on the bridge (and on all descendents) and run the _ADR, _SEG, and _BBN methods
to obtain the PCI device, function and bus numbers. Then run the associated _REG method to
indicate the availability of the region.

Note that this sequence of events (run the _STA, _INI, and _HID methods on all devices) is the
correct (and the only proper) method to detect the presence of the PCI root bridge or bridges.

3.2.4.4.2 Other ACPI Object Initialization

This step initializes the remaining AML Operation Regions and Fields that were not initialized
during the device and address space initialization.

Operation Regions and CreateField ASL statements can contain executable AML code and therefore
the initialization of the objects must be deferred until the CA subsystem and ACPI hardware are
both initialized. Some of this initialization may have been completed during the earlier steps. This
step completes that initialization.

This final pass through the loaded ACPI tables will execute all AML code outside of the control
methods that has not already been executed on-demand during the previous phases. The purpose is
to initialize the Field and OpRegion objects by executing all CreateField, OperationRegion code in
the AML. ACPI 2.0 has additional elements that will need to be initialized this way (Not yet
implemented.)

3.2.4.5 Other Operating System ACPI-related Initialization
All external ACPI interfaces are available.

• Enumerate devices using the _HID method

• Load, configure, and install device drivers

• Device Drivers install handlers for other address spaces such as SmBus, EC, and custom
address spaces

• The PCI driver enumerates PCI devices and loads PCIConfig handlers for PCI-to-PCI-bridge
devices (which causes the associated child PCI bus_REG methods to run, etc. RON’s
comment).

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 37

3.2.5 System Shutdown

3.2.5.1 AcpiTerminate

This step frees all dynamically allocated resources back to the host operating system The subsystem
may be restarted at Phase One after this step completes.

3.3 Multithreading Support

3.3.1 Reentrancy
All external interfaces to the ACPI CA Core Subsystem are fully reentrant. There are limitations to
the amount of concurrency allowed during control method execution, but these limitations are
transparent to the calling threads — in the sense that threads that attempt to execute control methods
will block until the interpreter becomes available.

3.3.2 Control Method Execution
Most of the multithread support within the ACPI subsystem is implemented using traditional locks
and mutexes around critical (shared) data areas. However, the AML interpreter design is different in
that the ACPI specification defines a special threading behavior for the execution of control
methods. The design implements the following portion of the ACPI specification that defines a
partially multithreaded AML interpreter in four sentences:

A control method can use other internal, or well-defined, control methods to accomplish the
task at hand, which can include defined control methods provided by the operating
software. Interpretation of a Control Method is not preemptive, but can block. When a
control method does block, the operating software can initiate or continue the execution of
a different control method. A control method can only assume that access to global objects
is exclusive for any period the control method does not block.

3.3.2.1 Control Method Blocking

First of all, how can a control method block? This is a fairly exhaustive list of the possibilities:

1. Executes the Sleep() ASL opcode

2. Executes the Acquire() ASL opcode and the request cannot be immediately satisfied

3. Executes the Wait() ASL opcode and the request cannot be immediately satisfied

4. Attempts to acquire the Global Lock (via Operation Region access, etc), but must wait

5. Attempts to execute a control method that is serialized and already executing (or is blocked),
or has reached its concurrency limit

6. Invokes the host debugger via a write to the debug object or executes the BreakPoint() ASL
opcode

7. Accesses an Operation Region which results in a dispatch to a user-installed handler that
blocks on I/O or other long-term operation

8. A Notify AML opcode results in a dispatch to a user-installed handler that blocks in a similar
way

ACPI Component Architecture Programmer Reference
R

38 Ref No SC-<xxxx>

3.3.2.2 Control Method Execution Rules
Here are some Control Method execution “rules” that the ACPI CA multithread support is built
upon. These rules are not always stated explicitly in the ACPI specification — some of them are
inferred.

1. A Control Method will run to completion (as far as the interpreter is concerned - this doesn’t
include thread preemption and interrupt handling by the OS) unless it blocks (i.e. a control
method will not be arbitrarily preempted by the interpreter.)

2. If a Control Method blocks, the next Control Method in the queue will be executed. When the
original (blocked) control method becomes ready, it will not preempt the executing method.
Instead, it will be placed back on the execution queue (We could place the method at the tail
or the head of the execution queue, or leave this decision to the OSL implementers).

3. Methods can be serialized (non-reentrant) or reentrant. A thread will block if an attempt is
made to execute (either via direct invocation or indirectly via a method call) a serialized
method that is already executing (or is blocked).

4. The “implicit” synchronization supported by Operation Regions and mentioned in the ACPI
specification seems to depend entirely on the non-preemptive control method execution model
(see above.)

3.3.2.3 A Simple Multithreading Model
The actual mechanisms to block a thread are simple and are already in place on the OSL side:

1. Sleep () - directly implemented via AcpiOsSleep (), will block the caller and free the
processor.

2. Acquire () - implemented via an AcpiOsSemaphore.

3. Wait () - implemented via an AcpiOsSemaphore.

4. Global Lock - implemented via an AcpiOsSemaphore and the interrupt caused by the
release of the lock.

5. Concurrency limit - we could put a queue at each method (high overhead), or simply re-queue
the thread (perhaps in a high-priority queue if we implement one).

6. Host Debugger - These are simply AcpiOs* calls that we assume will block for a long time.

7. Operation Region Handler blocks on some OS primitive

8. Notify handler blocks in the same manner as (7).

These mechanisms are sufficient to implement the blocking, but this isn’t enough to implement the
execution semantics of “no preemption unless the method does something to block itself”. This
requires additional support. I will take a stab at a multithread model here; please feel free to modify
or comment.

1. True concurrent control method execution is not allowed. Although the interpreter is
“reentrant” in the sense that more than one thread can call into the interpreter, only one thread
at any given time (system wide) can be actively interpreting a control method. All other
control methods (and the threads that are executing them) must be either blocked or awaiting
execution/resumption.

2. Therefore, we can put a mutex around the entire interpreter and only allow a thread access to
the interpreter when there are no other accessing threads.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 39

3. The implication and result is that when an executing control method blocks, it is defined to
have stopped accessing the interpreter, and is no longer executing within the interpreter.

4. If any interrupt handler needs interpreter services (such as the EC driver and the _Qxx control
methods), it must schedule a thread for execution. When it runs, this thread calls the
interpreter to execute the method.

The algorithm below implements the model described above:
AmlExecuteControlMethod ()

Acquire (Global Interpreter Lock)
If <the method does anything that might block>
Check if it will block (such as wait on a semaphore with a zero
timeout, or grab global lock)
If <we know or the method will block or still think that it might
block>
(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) - and perhaps before we
dispatch to a user OpRegion or Notify handler)

Release (Global Interpreter Lock) (Allow another thread to
execute a method)
Execute the blocking call (AcpiOsSleep or AcpiOsWaitSemaphore)
Acquire (Global Interpreter Lock) (Must re-enter the
interpreter, can’t preempt running thread!)

Release (Global Interpreter Lock) (Finished with this method, free
the interpreter)

3.3.2.4 A More Complex Multithreading Model
This extension to the model shown above adds a mechanism to implement a “priority” system where
all executing and blocked Control Methods have a higher priority than methods that are queued and
have never executed yet. This allows the interpreter some control over the scheduling of threads that
are executing control methods, without relying directly on an OS-defined priority mechanism. In
other words, it provides an OS-dependent way to schedule threads the way we want.

Two semaphores are used, call them an “Outer Gate” and an “Inner Gate”. A thread must pass
through both gates before it can begin execution. Once inside both gates, it releases the outer gate,
allowing a thread in to wait at the inner gate. When the first thread completes execution of the
method, it releases the inner gate, allowing the next thread to proceed. If at any time during
execution a thread must block, it releases the inner gate, blocks, then re-acquires the inner gate when
it resumes execution.

The maximum length of the queue at the inner gate will never exceed <the number of blocked
threads (running a method)> + 1 (the last thread allowed in through the outer gate).

In the typical (blocking) case, T1 blocks allowing T2 to run. T1 unblocks and eventually waits on
the inner gate. T2 eventually completes and signals the inner gate. T1 now runs to completion. All
of this happens regardless of the number of threads waiting at the outer gate - therefore, it gives
priority to threads that are already running a method.

The algorithm below implements the modified model described above:
AmlExecuteControlMethod ()

Acquire (Outer Lock)
Acquire (Inner Lock) (Must acquire both locks to begin execution)
Release (Outer Lock) (Allow one thread into the outer lock)
If <the method does anything that might block>

Check if it will block (such as wait on a semaphore with a zero
timeout)

ACPI Component Architecture Programmer Reference
R

40 Ref No SC-<xxxx>

If <we know or the method will block or still think that it might
block>
(such as sleep, acquire-no-units, wait-no-event, global lock not
available, reached concurrency limit) - and perhaps before we
dispatch to a user OpRegion or Notify handler)

Release (Inner Lock) (Allow another thread to begin
execution of a method)
Execute the blocking call (AcpiOsSleep, AcpiOsWaitSemaphore,
etc.)
Acquire (Inner Lock) (Must re-enter the interpreter since
we cannot preempt running thread!)

Release (Inner Lock) (Finished with this method, free the
interpreter)

Note: It is not so important that the threads free the locks in reverse order as it is that they all unlock the
locks in the same order. Since they are all executing the same code, this behavior is ensured.

While the simple multithreading model will be sufficient, the more complex model allows a more
“fair” allocation of resources under heavy load. The outstanding question is whether there will ever
be enough concurrent use of the AML interpreter to justify the complexity of the second model.

3.3.3 Global Lock Support
The ACPI Global Lock is intended to be a mutual exclusion mechanism that allows both the host
operating system and the resident firmware to access common hardware and data structures. It is not
intended to be a mutual exclusion mechanism between threads implemented by the host OS.

The one and only purpose of the Global Lock is to provide synchronization between the resident
firmware (SMI BIOS, etc.) and all other software on the platform.

The following assumptions are made about interaction between the OS and firmware concerning the
ACPI Global Lock:

• When the firmware owns the global lock, the OS queues up all requests to acquire the global
lock

• When the firmware releases the global lock, the OS grabs it and releases (satisfies) all queued
requests

• When the last thread calls the OS to release the global lock (now all of the acquires have
performed a matching release), the OS does the actual hardware release.

With this algorithm, it is possible to “starve” the firmware for arbitrary lengths of time, but this is
not considered to be a major problem.

The diagram below shows the global lock in relation to the BIOS and other system software.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 41

Figure 8. Global Lock Architecture

Global Lock

Shared Data

Resident
Firmware

(BIOS)

Operating System

Device Drivers

ACPI Subsystem

3.3.3.1 Obtaining The Global Lock
Gbl_GlobalLockThreadCount++;
If (Gbl_WeHaveTheGlobalLock)
{

return; /* All done! */
}
If (AcquireHardwareGlobalLock())
{

Gbl_WeHaveTheGlobalLock = TRUE;
return; /* All done! */

}
AmlExitInterpreter ();
AcpiOsWaitSemaphore (GlobalLockSemaphore, WAIT_FOREVER);
AmlEnterInterpreter ();

3.3.3.2 Releasing the Global Lock
Gbl_GlobalLockThreadCount--;
If (Gbl_GlobalLockThreadCount == 0)
{

Gbl_WeHaveTheGlobalLock = FALSE;
ReleaseHardwareGlobalLock ();

}

ACPI Component Architecture Programmer Reference
R

42 Ref No SC-<xxxx>

3.3.3.3 Global Lock Interrupt Handler
/* We get an SCI when the firmware releases the lock */

AcquireHardwareGlobalLock ()
Gbl_WehaveTheGlobalLock = TRUE;
For <all threads waiting on the lock> (Gbl_GlobalLockThreadCount)
{

AcpiOsSignalSemaphore (GlobalLockSemaphore);
}

3.3.4 Single Thread Environments
Both the design and implementation of the ACPI CA Core Subsystem is targeted primarily for
inclusion within the kernel of a multitasking operating system. However, it is possible to generate
and operate the subsystem within a single threaded environment — with either a primitive operating
system or loader, or even standalone with no additional system software other than a few device
drivers.

The successful operation of the ACPI CA in any environment depends upon the correct
implementation of the OSL layer underneath it. This requirement is no different for a single
threaded environment, but some special considerations must be made:

The primary mechanism used for mutual exclusion and multithread synchronization throughout the
ACPI subsystem is the OSL Semaphore. Since this mechanism is not required in a single threaded
environment, it is sufficient to implement these interfaces to simply always return an AE_OK
exception code.

When used within an OS kernel at ring 0, the ACPI debugger requires a dedicated thread to perform
command line processing. Since this mechanism is not required in a single threaded environment, it
can be configured out during generation of the subsystem.

If defined, the “ACPI_APPLICATION” switch disables all multithread support throughout the
ACPI core subsystem.

3.4 Debugging Support
Two styles of debugging are supported with the debugging tools available with the ACPI
Subsystem:

1. Extraordinary amounts of trace and debug output can be generated from debug output and
trace statements that are embedded in the debug version of the ACPI subsystem. This data can
be used to track down problems after the fact. So much data can be generated that the debug
output can be selectively enabled on a per-subcomponent basis and even a finer granularity of
the type of debug statement can be selected.

2. An AML debugger is provided that has the ability to single step control methods to examine
the results of individual AML opcodes, and to change the values of local variables and
method arguments if necessary.

3.4.1 Function Tracing (ACPI_FUNCTION_TRACE Macro)
Most of the functions within the subsystem use the ACPI_FUNCTION_TRACE macro upon entry
and the return_ACPI_STATUS macro upon exit. For the debug version of the subsystem, if the

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 43

function trace debug level is enabled, the ACPI_FUNCTION_TRACE macro displays the name of
the module and function and the current call nesting level. Upon exit, the return_ACPI_STATUS
macro again displays the name of the function, the call nesting level, and the return status code of
the call.

The next few lines show examples of the function tracing. On each invocation of the
ACPI_FUNCTION_TRACE macro, we see the module name and line number, followed by the call
nesting level (2 digits), followed by the name of the actual procedure entered. Some versions of the
ACPI_FUNCTION_TRACE macro allow one of the function parameters to be displayed as well.
Executing \BITZ
nsobject-0356 [07] NsGetAttachedObject : ----Entry 004A2CC8
nsobject-0373 [07] NsGetAttachedObject : ----Exit- 004A2728
dswscope-0186 [07] DsScopeStackPush : ----Entry
utalloc-0235 [07] UtAcquireFromCache : 004A1DC8 from State Cache
utmisc-0711 [08] UtPushGenericState : ----Entry
utmisc-0719 [08] UtPushGenericState : ----Exit-

dswscope-0223 [07] DsScopeStackPush : ----Exit- AE_OK
dsmthdat-0274 [07] DsMethodDataInitArgs : ----Entry 004A1438
dsmthdat-0655 [08] DsStoreObjectToLocal : ----Entry
dsmthdat-0657 [08] DsStoreObjectToLocal : Opcode=104 Idx=0 Obj=004A2F08

The function entry and exit macros have the ability to generate huge amounts of output data.
However, this is often the best way to determine the actual execution path taken by subsystem. If the
problem being debugged can be narrowed to a single control method, tracing can be enabled for that
method only, thus reducing the amount of debug data generated.

3.4.2 Execution Debug Output (ACPI_DEBUG_PRINT Macro)
The ACPI_DEBUG_PRINT macro is used throughout the source code of the ACPI core subsystem
to selectively print debug messages. Over 900 invocations of the ACPI_ DEBUG_PRINT are
scattered throughout the ACPI subsystem source. This macro is compiled out entirely for non-debug
versions of the subsystem.

Output from ACPI_ DEBUG_PRINT can be enabled at two levels: on a per-subcomponent level
(Namespace manager, Parser, Interpreter, etc.), and on a per-type level (informational, warnings,
errors, and more.) There are two global variables that set these output levels:

1. DebugLayer Bit field that enables/disables debug output from entire subcomponents within
the ACPI subsystem.

2. DebugLevel Bit field that enables/disables the various debug output levels

The example below shows some of the debug output from a namespace search. None of the output
of the function tracing is shown here, but the enter/exit traces would appear interspersed with the
other debug output.
nsutils-0346: NsInternalizeName: returning [00821F30] (abs) "\BITZ"
nsaccess-0424: NsLookup: Searching from root [007F09B4]
nsaccess-0477: NsLookup: Multi Name (1 Segments, Flags=0)
nsaccess-0494: NsLookup: [BITZ/]
nssearch-0166: NsSearchOnly: Searching \/ [007F09B4]
nssearch-0168: NsSearchOnly: For BITZ (type 0)
nssearch-0239: NsSearchOnly: Name BITZ (actual type 8) found at 007FC384
nseval-0302: NsEvaluateByName: \BITZ [007FC384] Value 007FE0C0

ACPI Component Architecture Programmer Reference
R

44 Ref No SC-<xxxx>

3.4.3 ACPI Debugger
Provided as a subcomponent of the ACPI Core Subsystem, the ACPI/AML Debugger provides the
capability to display subsystem data structures and objects (such as the namespace and associated
internal object), and to debug the execution of control methods (including single step and breakpoint
support.) By using only two OSL interfaces, AcpiOsGetLine for input and AcpiOsPrint for output,
the debugger can operate standalone or as an extension to a host debugger.

The debugger provides a more active debugging environment where data can be examined and
altered during the execution of control methods.

3.5 Environmental Support Requirements
This section describes the environmental requirements of the ACPI subsystem. This includes the
external functions and header files that the subsystem uses, as well as the resources that are
consumed from the host operating system.

3.5.1 Resource Requirements
Static Memory:

Non-Debug Version: 73.7K Code, 9.5K Data, 83.2K Total
Debug Version: 156.1K Code, 63.6K Data, 219.7K Total

Dynamic Memory: TBD: (Tables, namespace, objects)

System Objects: TBD: (Semaphores)

3.5.2 C Library Functions
In order to make the ACPI Core Subsystem as portable and truly OS-independent as possible, there
is only extremely limited use of standard C library functions within the Core Subsystem component
itself. The calls are limited to those that can generate code in-line or link to small, independent code
modules. Below is a comprehensive list of the C library functions that are used by the Core
Subsystem code.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 45

Table 1. C Library Functions Used within the Subsystem
sprintf

memcpy

memset

strcat

strcmp

strcpy

strlen

strncmp

strncat

strncpy

strstr

strtoul

strupr

toupper

tolower

va_list

va_start

va_end

If “SYSTEM_CLIB_FUNCTIONS” is defined during the compilation of the subsystem, the
subsystem must be linked to a local C library to resolve these Clib references. If
SYSTEM_CLIB_FUNCTIONS is not set, the subsystem will automatically link to local
implementations of these functions. Note that the local implementations are written in portable
ANSI C, and may not be as efficient as local assembly code implementations of the same functions.
Therefore, it is recommended that the local versions of the C library functions be used if at all
possible.

3.5.3 System Include Files
The following include files (header files) are useful for users of both the Acpi* and AcpiOs*
interfaces:

• acexcep.h The ACPI_STATUS exception codes

• acpiosxf.h The prototypes for all of the AcpiOs* interfaces

• acpixf.h The prototypes for all of the Acpi* interfaces

• actypes.h Common data types used across all interfaces

3.5.3.1 Customization to the Target Environment
The use of header files that are external to the ACPI subsystem is confined to a single header file
named acenv.h. These external include files consist of several of the standard C library headers:

• stdio.h

• stdlib.h

• stdarg.h

ACPI Component Architecture Programmer Reference
R

46 Ref No SC-<xxxx>

• string.h

When generating the Core Subsystem component from source, the acenv.h header may be modified
if the filenames above are not appropriate for generation on the target system. For example, some
environments use a different set of header files for the kernel-level C library versus the user-level C
library. Use of C library routines within the Core Subsystem component has been kept to a
minimum in order to enhance portability and to ensure that the Core Subsystem will run as a kernel-
level component in most operating systems.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 47

4 Interface Parameters and Data
Types

4.1 ACPI Subsystem Interface Parameters

4.1.1 ACPI Names and Pathnames
As defined in the ACPI Specification, all ACPI object names (the names for all ACPI objects such
as control methods, regions, buffers, packages, etc.) are exactly four ASCII characters long. The
ASL compiler automatically pads names out to four characters if an input name in the ASL source is
shorter. (The padding character is the underscore.) Since all ACPI names are always of a fixed
length, they can be stored in a single 32-bit integer to simplify their use.

Pathnames are null-terminated ASCII strings that reference named objects in the ACPI namespace.
A pathname can be composed of multiple 4-character ACPI names separated by a period. In
addition, two special characters are defined. The backslash appearing at the start of a pathname
indicates to begin the search at the root of the namespace. A carat in the pathname directs the search
to traverse upwards in the namespace by one level. The ACPI namespace is defined in the ACPI
specification. The ACPI CA subsystem honors all of the naming conventions that are defined in the
ACPI specification.

Frequently in this document, pathnames are referred to as “fully qualified pathname” or “absolute
pathname” or “relative pathname”. A pathname is fully qualified if it begins with the backslash
character (‘\’) since it defines the complete path to an object from the root of the namespace. All
other pathnames are relative since they specify a path to an object from somewhere in the
namespace besides the root.

The ACPI specification defines special search rules for single segment (4-character) or standalone
names. These rules are intended to apply to the execution of AML control methods that reference
named ACPI objects. The ACPI CA Core Subsystem component implements these rules fully for
the execution of control methods. It does not implement the so-called “parent tree” search rules for
the external interfaces in order to avoid object reference ambiguities.

4.1.2 Pointers
Many of the interfaces defined here pass pointers as parameters. It is the responsibility of the caller
to ensure that all pointers passed to the ACPI CA subsystem are valid and addressable. The
interfaces only verify that pointers are non-NULL. If a pointer is any value other than NULL, it will
be assumed to be a valid pointer and will be used as such.

4.1.3 Buffers
It is the responsibility of the caller to ensure that all input and output buffers supplied to the Core
Subsystem component are at least as long as the length specified in the ACPI_BUFFER structure,
readable, and writable in the case of output buffers. The Core Subsystem does not perform
addressability checking on buffer pointers, nor does it perform range validity checking on the
buffers themselves. In the ACPI Component Architecture, it is the responsibility of the OS Services
Layer to validate all buffers passed to it by application code, create aliases if necessary to address

ACPI Component Architecture Programmer Reference
R

48 Ref No SC-<xxxx>

buffers, and ensure that all buffers that it creates locally are valid. In other words, the ACPI Core
Subsystem trusts the OS Services Layer to validate all buffers.

When the length field of ACPI_BUFFER is set to ACPI_ALLOCATE_BUFFER before a call that
returns data in an output buffer, the core subsystem will allocate a return buffer on behalf of the
caller. It is the responsibility of the caller to free this buffer when it is no longer needed.

4.2 ACPI Subsystem Data Types

4.2.1 UINT64 and COMPILER_DEPENDENT_UINT64
Beginning with the ACPI version 2.0 specification, the width of integers within the AML interpreter
are defined to be 64 bits on all platforms (both 32- and 64-bit). The implementation of this
requirement requires the deployment of 64-bit integers across the entire ACPI Core Subsystem.
Since there is (currently) no standard method of defining a 64-bit integer in the C language, the
COMPILER_DEPENDENT_UINT64 macro is used to allow the UINT64 typedef to be defined by
each host compiler. The UINT64 data type is used at the Acpi* interface level for both physical
memory addresses and ACPI (interpreter) integers.

4.2.2 ACPI_PHYSICAL_ADDRESS
The width of all physical addresses is fixed at 64 bits, regardless of the platform or operating
system. Logical addresses (pointers) remain the natural width of the machine (i.e. 32 bit pointers on
32-bit machines, 64-bit pointers on 64-bit machines.) This allows for a full 64 bit address space on
64-bit machines as well as “extended” physical addresses (above 4Gbytes) on 32-bit machines.

4.2.3 ACPI_POINTER
This data type is a union that allows either a physical address or logical pointer to be specified. A
flags field defines the pointer type.

4.2.4 ACPI_INTEGER
This is the data type that directly corresponds to the ACPI-defined Integer data type. Beginning with
ACPI 2.0, the width of this data type is 64 bits on all platforms.

4.2.5 ACPI_STRING – ASCII String
The ACPI_STRING data type is a conventional “char *” null-terminated ASCII string. It is used
whenever a full ACPI pathname or other variable-length string is required. This data type was
defined to strongly differentiate it from the ACPI_NAME data type.

4.2.6 ACPI_BUFFER – Input and Output Memory Buffers
Many of the ACPI CA interfaces require buffers to be passed into them and/or buffers to be returned
from them. A common structure is used for all input and output buffers across the interfaces. The
buffer structure below is used for both input and output buffers. The Core Subsystem component

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 49

only allocates memory for return buffers if requested to do so — this allows the caller complete
flexibility in where and how memory is allocated. This is especially important in kernel level code.

typedef struct
{

UINT32 Length; // Length in bytes of the buffer;
void *Pointer; // pointer to buffer

} ACPI_BUFFER;

4.2.6.1 Input Buffer
An input buffer is defined to be a buffer that is filled with data by the user (caller) before it is passed
in as a parameter to one of the ACPI interfaces. When passing an input buffer to one of the Core
Subsystem interfaces, the user creates an ACPI_BUFFER structure and initializes it with a pointer
to the actual buffer and the length of the valid data in the buffer. Since the memory for the actual
ACPI_BUFFER structure is small, it will typically be dynamically allocated on the CPU stack. For
example, a user may allocate a 4K buffer for common storage. The buffer may be reused many
times with data of various lengths. Each time the number of bytes of significant data contained in
the buffer is entered in the Length field of the ACPI_BUFFER structure before an Core Subsystem
interface is called.

4.2.6.2 Output Buffer

An output buffer is defined to be a buffer that is filled with data by an ACPI interface before it is
returned to the caller. When the ACPI_BUFFER structure is used as an output buffer the caller must
always initialize the structure by either

1. Placing a value in the Length field that indicates the maximum size of the buffer that is
pointed to by the Pointer field. The length is used by the ACPI interface to ensure that there is
sufficient user provided space for the return value.

2. Initializing the Length field to ACPI_ALLOCATE_BUFFER to cause the ACPI subsystem to
allocate a buffer.

If a buffer that was passed in by the caller is too small, the ACPI interfaces that require output
buffers will indicate the failure by returning the error code AE_BUFFER_OVERFLOW. The
interfaces will never attempt to put more data into the caller’s buffer than is specified by the Length
field of the ACPI_BUFFER structure (unless ACPI_ALLOCATE_BUFFER is used). The caller
may recover from this failure by examining the Length field of the ACPI_BUFFER structure. The
interface will place the required length in this field in the event that the buffer was too small.

During normal operation, the ACPI interface will copy data into the buffer. It will indicate to the
caller the length of data in the buffer by setting the Length field of the ACPI_BUFFER to the actual
number of bytes placed in the buffer.

Therefore, the Length field is both an input and output parameter. On input, it indicates either the
size of the buffer or an indication to the ACPI subsystem to allocate a return buffer on behalf of the
caller. On output, it either indicates the actual amount of data that was placed in the buffer (if the
buffer was large enough), or it indicates the buffer size that is required (if the buffer was too small)
and the exception is set to AE_BUFFER_OVERFLOW.

4.2.7 ACPI_HANDLE – Object Handle
References to ACPI objects managed by the Core Subsystem component are made via the
ACPI_HANDLE data type. A handle to an object is obtained by creating an attachment to the object

ACPI Component Architecture Programmer Reference
R

50 Ref No SC-<xxxx>

via the AcpiPathnameToHandle or AcpiNameToHandle primitives. The concept is similar to
opening a file and receiving a connection – after the pathname has been resolved to an object
handle, no additional internal searching is performed whenever additional operations are needed on
the object.

References to object scopes also use the ACPI_HANDLE type. This allows objects and scopes to be
used interchangeably as parameters to Acpi interfaces. In fact, a scope handle is actually a handle to
the first object within the scope.

4.2.7.1 Predefined Handles
One predefined handle is provided in order to simplify access to the ACPI namespace:

1. ACPI_ROOT_OBJECT: A handle to the root object of the namespace. All objects contained
within the root scope are children of the root object.

4.2.8 ACPI_OBJECT_TYPE – Object Type Codes
Each ACPI object that is managed by the ACPI subsystem has a type associated with it. The valid
ACPI object types are defined as follows:

Table 2. ACPI Object Type Codes
ACPI_TYPE_ANY

ACPI_TYPE_INTEGER

ACPI_TYPE_STRING

ACPI_TYPE_BUFFER

ACPI_TYPE_PACKAGE

ACPI_TYPE_FIELD_UNIT

ACPI_TYPE_DEVICE

ACPI_TYPE_EVENT

ACPI_TYPE_METHOD

ACPI_TYPE_MUTEX

ACPI_TYPE_REGION

ACPI_TYPE_POWER

ACPI_TYPE_PROCESSOR

ACPI_TYPE_THERMAL

ACPI_TYPE_BUFFER_FIELD

ACPI_TYPE_DDB_HANDLE

ACPI_TYPE_DEBUG_OBJECT

ACPI_TYPE_EXTERNAL_MAX

4.2.9 ACPI_OBJECT – Method Parameters and Return Objects
The general purpose ACPI_OBJECT is used to pass parameters to control methods, and to receive
results from the evaluation of namespace objects. The point of this data structure is to provide a
common object that can be used to contain multiple ACPI data types.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 51

When passing parameters to a control method, each parameter is contained in an ACPI_OBJECT.
All of the parameters are then grouped together in an ACPI_OBJECT_LIST.

When receiving a result from the evaluation of a namespace object, an ACPI_OBJECT is returned
in an ACPI_BUFFER structure. This allows variable length objects such as ACPI Packages to be
returned in the buffer. The first item in the buffer is always the base ACPI_OBJECT.

typedef union AcpiObj
{

ACPI_OBJECT_TYPE Type; // Object Type
struct /* ACPI_TYPE_INTEGER */
{

ACPI_OBJECT_TYPE Type;
ACPI_INTEGER Value; // The 64-bit value

} Integer;

struct /* ACPI_TYPE_STRING */
{

ACPI_OBJECT_TYPE Type;
UINT32 Length; // Length of string minus null
NATIVE_CHAR *Pointer; // points to the string

} String;

struct /* ACPI_TYPE_BUFFER */
{

ACPI_OBJECT_TYPE Type;
UINT32 Length; // # of bytes in buffer
UINT8 *Pointer; // points to the buffer

} Buffer;

struct /* ACPI_TYPE_ANY */
{

ACPI_OBJECT_TYPE Type;
UINT32 Reserved;
ACPI_HANDLE Handle; // object reference

} Reference;

struct /* ACPI_TYPE_PACKAGE */
{

ACPI_OBJECT_TYPE Type;
UINT32 Count; // # of elements in package
union AcpiObj *Elements; // Pointer to array of objects

} Package;

struct /* ACPI_TYPE_PROCESSOR */
{

ACPI_OBJECT_TYPE Type;
UINT32 ProcId;
ACPI_IO_ADDRESS PblkAddress;
UINT32 PblkLength;

} Processor;

struct /* ACPI_TYPE_POWER */
{

ACPI_OBJECT_TYPE Type;
UINT32 SystemLevel;
UINT32 ResourceOrder;

} PowerResource;

} ACPI_OBJECT, *PACPI_OBJECT;

ACPI Component Architecture Programmer Reference
R

52 Ref No SC-<xxxx>

4.2.10 ACPI_OBJECT_LIST – List of Objects
This object is used to pass parameters to control methods via the AcpiEvaluateMethod interface. The
Count is the number of ACPI objects pointed to by the Pointer field. In other words, the Pointer
field must point to an array that contains Count ACPI objects.

typedef struct AcpiObjList
{

UINT32 Count;
ACPI_OBJECT *Pointer;

} ACPI_OBJECT_LIST, *PACPI_OBJECT_LIST;

4.2.11 ACPI_EVENT_TYPE – Fixed Event Type Codes
The ACPI fixed events are defined in the ACPI specification. The event codes below are used to
install handlers for the individual events.

EVENT_PMTIMER // Power Management Timer rollover
EVENT_NOT_USED // Reserved
EVENT_GLOBAL // Global Lock released
EVENT_POWER_BUTTON // Power Button (pressed)
EVENT_SLEEP_BUTTON // Sleep Button (pressed)
EVENT_RTC // Real Time Clock alarm
EVENT_GENERAL // TBD
ACPI_EVENT_MAX

4.2.12 ACPI_TABLE_TYPE – ACPI Table Type Codes
The following ACPI tables are supported by the ACPI CA subsystem. The table type codes below
are used to load, unload, or get a copy of the individual tables.

Table 3. ACPI Table Type Codes
TABLE_RSDP Root System Description Pointer
TABLE_DSDT Differentiated System Description Table
TABLE_FADT Fixed ACPI Description Table
TABLE_FACS Firmware ACPI Control Structure
TABLE_PSDT Persistent System Description Table
TABLE_RSDT Root System Description Table
TABLE_SSDT Secondary System Description Table

4.2.13 ACPI_TABLE_HEADER – Common ACPI Table Header
typedef struct /* ACPI common table header */
{

char Signature [4]; /* Identifies type of table */
UINT32 Length; /* Length of table, in bytes,

* including header */
UINT8 Revision; /* Specification minor version # */
UINT8 Checksum; /* To make sum of entire table = 0 */
char OemId [6]; /* OEM identification */
char OemTableId [8]; /* OEM table identification */
UINT32 OemRevision; /* OEM revision number */
char AslCompilerId [4]; /* ASL compiler vendor ID */
UINT32 AslCompilerRevision;/* ASL compiler revision number */

} ACPI_TABLE_HEADER;

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 53

4.2.14 ACPI_STATUS – Interface Exception Return Codes
Each of the external ACPI interfaces return an exception code of type ACPI_STATUS as the
function return value, as shown in the example below:

ACPI_STATUS Status;

Status = AcpiLoadTables (RsdpPhysicalAddress);
if (Status != AE_OK)
{

// Exception handling code here
}

4.3 ACPI Resource Data Types
These data types are used by the ACPI CA resource interfaces.

4.3.1 PCI IRQ Routing Tables
The AcpiGetIrqRoutingTable interface retrieves the PCI IRQ routing tables. This interface returns
the routing table in the ACPI_BUFFER provided by the caller. Upon return, the Length field of the
ACPI_BUFFER will indicate the amount of the buffer used to store the PCI IRQ routing tables. If
the returned status is AE_BUFFER_OVERFLOW, the Length indicates the size of the buffer
needed to contain the routing table.

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer contains a series
of PCI_ROUTING_TABLE entries, each of which contains both a Length member and a Data
member. The Data member is a PRT_ENTRY. The Length member specifies the length of the
PRT_ENTRY and can be used to walk the PCI_ROUTING_TABLE entries. By incrementing a
buffer walking pointer by Length bytes, the pointer will reference each succeeding table element.
The final PCI_ROUTING_TABLE entry will contain no data and have a Length member of zero.

Each PRT_ENTRY contains the Address, Pin, Source, and Source Index information as described in
Chapter 6 of the ACPI Specification. While all structure members are UINT32 types, the valid
portion of both the Pin and SourceIndex members are only UINT8 wide. Although the Source
member is defined as UINT8 Source[1], it can be de-referenced as a null-terminated string.

ACPI Component Architecture Programmer Reference
R

54 Ref No SC-<xxxx>

typedef struct /* A single IRQ table entry */
{

UINT32 Address; /* PCI Address of device */
UINT32 Pin; /* PCI Pin (0=INTA, 1=INTB, 2=INTC, 3=INTD # */
UINT32 SourceIndex; /* Index of resource of allocating device */
UINT8 Source[1]; /* Device that allocates (0 terminated) */

/* this interrupt */
} PRT_ENTRY;

typedef struct /* IRQ table entry packed in the return buffer */
{

UINT32 Length; /* Length of this PRT_ENTRY */
PRT_ENTRY Data; /* The PRT Entry data */

} PCI_ROUTING_TABLE;

4.3.2 Device Resources
Device resources are returned by indirectly executing the _CRS and _PRS control methods via the
AcpiGetCurrentResources and AcpiGetPossibleResources interfaces. These device resources are
needed to properly execute the _SRS control method using the AcpiSetCurrentResources interface.

These interfaces require an ACPI_BUFFER parameter. If the Length member of the
ACPI_BUFFER is set to zero, the AcpiGet* interfaces will return an ACPI_STATUS of
AE_BUFFER_OVERFLOW with Length set to the size buffer needed to contain the resource
descriptors. If the Length member is non-zero and Pointer in non-NULL, it is assumed that Pointer
points to a memory buffer of at least Length size. Upon return, the Length member will indicate the
amount of the buffer used to store the resource descriptors.

4.3.2.1 RESOURCE_TYPE – Resource Data Types

The following resource types are supported by the ACPI CA subsystem. The resource types that
follow are use in the resource definitions used in the resource handling interfaces:
AcpiGetCurrentResources, AcpiGetPossibleResources, and AcpiSetCurrentResources.

1. Irq
3. Dma
4. StartDependentFunctions
5. EndDependentFunctions
6. Io
7. FixedIo
8. VendorSpecific
9. EndTag
10. Memory24
11. Memory32
12. FixedMemory32
13. Address16
14. Address32
15. ExtendedIrq

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 55

typedef union /* union of all resources */
{

IRQ_RESOURCE Irq;
DMA_RESOURCE Dma;
START_DEPENDENT_FUNCTIONS_RESOURCE StartDependentFunctions;
IO_RESOURCE Io;
FIXED_IO_RESOURCE FixedIo;
VENDOR_RESOURCE VendorSpecific;
MEMORY24_RESOURCE Memory24;
MEMORY32_RESOURCE Memory32;
FIXED_MEMORY32_RESOURCE FixedMemory32;
ADDRESS16_RESOURCE Address16;
ADDRESS32_RESOURCE Address32;
EXTENDED_IRQ_RESOURCE ExtendedIrq;

} RESOURCE_DATA;

typedef struct _resource_tag
{

RESOURCE_TYPE Id;
UINT32 Length;
RESOURCE_DATA Data;

} RESOURCE;

The ACPI_BUFFER Pointer points to a buffer of at least Length size. The buffer is filled with a
series of RESOURCE entries, each of which begins with an Id that indicates the type of resource
descriptor, a Length member and a Data member that is a RESOURCE_DATA union. The
RESOURCE_DATA union can be any of fourteen different types of resource descriptors. The
Length member will allow the caller to walk the RESOURCE entries. By incrementing a buffer
walking pointer by Length bytes, the pointer will reference each succeeding table element. The final
element in the list of RESOURCE entries will have an Id of EndTag. An EndTag entry contains no
additional data.

When walking the RESOURCE entries, the Id member determines how to interpret the structure.
For example, if the Id member evaluates to StartDependentFunctions, then the Data member is two
32-bit values, a CompatibilityPriority value and a PerformanceRobustness value. These values are
interpreted using the constant definitions that are found in actypes.h, GOOD_CONFIGURATION,
ACCEPTABLE_CONFIGURATION or SUB_OPTIMAL_CONFIGURATION. The interpretation
of these constant definitions is discussed in the Start Dependent Functions section of the ACPI
specification, Chapter 6.

As another, more complex example, consider a RESOURCE entry with an Id member that evaluates
to Address32, then the Data member is an ADDRESS32_RESOURCE structure. The
ADDRESS32_RESOURCE structure contains fourteen members that map to the data discussed in
the DWORD Address Space Descriptor section of the ACPI specification, Chapter 6. The
Data.Address32.ResourceType member is interpreted using the constant definitions
MEMORY_RANGE, IO_RANGE or BUS_NUMBER_RANGE. This value also effects the
interpretation of the Data.Address32.Attribute structure because it contains type specific
information.

The General Flags discussed in the ACPI specification are interpreted and given separate members
within the ADDRESS32_RESOURCE structure. Each of the bits in the General Flags that describe
whether the maximum and minimum addresses is fixed or not, whether the address is subtractively
or positively decoded and whether the resource simply consumes or both produces and consumes a
resource are represented by the members MaxAddressFixed, MinAddressFixed, Decode and
ProducerConsumer respectively.

ACPI Component Architecture Programmer Reference
R

56 Ref No SC-<xxxx>

The Attribute member is interpreted based upon the ResourceType member. For example, if the
ResourceType is MEMORY_RANGE, then the Attribute member contains two 16-bit values, a
Data.Address32.Attribute.Memory.CacheAttribute value and a ReadWriteAttribute value.

The Data.Address32.Granularity, MinAddressRange, MaxAddressRange, AddressTranslationOffset
and AddressLength members are simply interpreted as UINT32 numbers.

The optional Data.Address32.ResourceSourceIndex is valid only if the ResourceSourceStringLength
is non-zero. Although the ResourceSource member is defined as UINT8 ResourceSource[1], it can
be de-referenced as a null-terminated string whose length is ResourceSourceStringLength.

4.4 Exception Codes
A common and consistent set of return codes is used throughout the ACPI subsystem. For example,
all of the public ACPI interfaces return the exception AE_BAD_PARAMETER when an invalid
parameter is detected.

The exception codes are contained in the public acexcep.h file.

The entire list of available exception codes is given below, along with a generic description of each
code. See the description of each public primitive for a list of possible exceptions, along with
specific reason(s) for each exception.

Table 4. Exception Code Values

Exception Name Typical Meaning

AE_OK No error

Environmental Exceptions

AE_ERROR Unspecified error

AE_NO_ACPI_TABLES ACPI tables could not be found

AE_NO_NAMESPACE A namespace has not been loaded

AE_NO_MEMORY Insufficient dynamic memory

AE_NOT_FOUND The name was not found in the namespace

AE_NOT_EXIST A required entity does not exist

AE_EXIST An entity already exists

AE_TYPE The object type is incorrect

AE_NULL_OBJECT A required object was missing

AE_NULL_ENTRY The requested object does not exist

AE_BUFFER_OVERFLOW The buffer provided is too small

AE_STACK_OVERFLOW An internal stack overflowed

AE_STACK_UNDERFLOW An internal stack underflowed

AE_NOT_IMPLEMENTED The feature is not implemented

AE_VERSION_MISMATCH An incompatible version was detected

AE_SUPPORT The feature is not supported

AE_SHARE There was a sharing violation

AE_LIMIT A predefined limit was exceeded

AE_TIME A time limit or timeout expired

AE_UNKNOWN_STATUS An unknown status code was encountered

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 57

Exception Name Typical Meaning

AE_ACQUIRE_DEADLOCK Internal error – attempt was made to
acquire a mutex in improper order

AE_RELEASE_DEADLOCK Internal error – attempt was made to
release a mutex in improper order

AE_NOT_ACQUIRED An attempt to release a mutex or the Global
Lock without a previous acquire

AE_ALREADY_ACQUIRED Internal error – attempt was made to
acquire a mutex twice

AE_NO_HARDWARE_RESPONSE Hardware did not respond after an I/O
operation

AE_NO_GLOBAL_LOCK There is no hardware Global Lock

AE_ABORT_METHOD A control method was aborted

Programmer Exceptions (ACPI external interfaces)

AE_BAD_PARAMETER A parameter is out of range or invalid

AE_BAD_CHARACTER An invalid character was found in a name

AE_BAD_PATHNAME An invalid character was found in a
pathname

AE_BAD_DATA A package or buffer contained incorrect
data

AE_BAD_ADDDRESS An invalid physical address

AE_ALIGNMENT A non-aligned buffer was received

AE_BAD_HEX_CONSTANT Invalid character in a Hex constant

AE_BAD_OCTAL_CONSTANT Invalid character in an Octal constant

AE_BAD_DECIMAL_CONSTANT Invalid character in a Decimal constant

ACPI Table Exceptions

AE_BAD_SIGNATURE An ACPI table has an invalid signature

AE_BAD_HEADER Invalid field in an ACPI table header

AE_BAD_CHECKSUM An ACPI table checksum is not correct

AE_BAD_VALUE An invalid value was found in a table

AE_TABLE_NOT_SUPPORTED ACPI table is not consumed by the ACPI
subsystem

AE_INVALID_TABLE_LENGTH The FADT or FACS has improper length

AML (Interpreter) Exceptions

AE_AML_ERROR Unspecified AML error

AE_AML_PARSE Invalid AML could not be parsed

AE_AML_BAD_OPCODE Invalid AML opcode encountered

AE_AML_NO_OPERAND An operand is missing (such as a method
that did not return a required value)

AE_AML_OPERAND_TYPE An operand of an incorrect type was
encountered

AE_AML_OPERAND_VALUE The operand had an inappropriate or invalid
value

AE_AML_UNINITIALIZED_LOCAL Method tried to use an uninitialized local
variable

AE_AML_UNINITIALIZED_ARG Method tried to use an uninitialized

ACPI Component Architecture Programmer Reference
R

58 Ref No SC-<xxxx>

Exception Name Typical Meaning

argument

AE_AML_UNINITIALIZED_ELEMENT Method tried to use an empty package
element

AE_AML_NUMERIC_OVERFLOW Overflow during BCD conversion or other

AE_AML_REGION_LIMIT Tried to access beyond the end of an
Operation Region

AE_AML_BUFFER_LIMIT Tried to access beyond the end of a buffer

AE_AML_PACKAGE_LIMIT Tried to access beyond the end of a package

AE_AML_DIVIDE_BY_ZERO During execution of AML Divide operator

AE_AML_BAD_NAME An ACPI name contains invalid character(s)

AE_AML_NAME_NOT_FOUND Could not resolve a named reference

AE_AML_INTERNAL An internal error within the interpreter

AE_AML_INVALID_SPACE_ID An Operation Region SpaceID is invalid

AE_AML_STRING_LIMIT String is longer than 200 characters

AE_AML_NO_RETURN_VALUE A method did not return a required value

AE_AML_NOT_OWNER A thread tried to release a mutex that it
does not own

AE_AML_MUTEX_ORDER Mutex SyncLevel release mismatch

AE_AML_MUTEX_NOT_ACQUIRED Attempt to release a mutex that was not
previously acquired

AE_AML_INVALID_RESOURCE_TYPE Invalid resource type in resource list

AE_AML_INVALID_INDEX Invalid Argx or Localx (x too large)

AE_AML_REGISTER_LIMIT Bank value or Index value beyond range of
register

AE_AML_NO_WHILE Break or Continue without a While

AE_AML_ALIGNMENT Non-aligned memory transfer on platform
that does not support this

AE_AML_NO_RESOURCE_END_TAG No End Tag in a resource list

AE_AML_BAD_RESOURCE_VALUE Invalid value of a resource element

AE_AML_CIRCULAR_REFERENCE Two references refer to each other

Internal Exceptions used for control

AE_CTRL_RETURN_VALUE A Method returned a value

AE_CTRL_PENDING Method is calling another method

AE_CTRL_TERMINATE Terminate the executing method

AE_CTRL_TRUE An If or While predicate result

AE_CTRL_FALSE An If or While predicate result

AE_CTRL_DEPTH Maximum search depth has been reached

AE_CTRL_END An If or While predicate is false

AE_CTRL_TRANSFER Transfer control to called method

AE_CTRL_BREAK A Break has been executed

AE_CTRL_CONTINUE A Continue has been executed

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 59

5 Subsystem Configuration
There are four methods of configuring the OS-independent ACPI Core Subsystem. The first is the
per-machine configuration for machine-specific dependencies. The second is per-compiler
configuration for compiler dependencies. The third configuration is compile-time configuration
through the use of compiler switches. The fourth configuration method is via run-time global
variables which are statically initialized from the configuration header file (This is really a
combination of static compile-time configuration and run-time configuration).

5.1 Configuration Files
The ACPI CA subsystem has three types of configuration header files to allow the subsystem to be
tailored to the particular machine and compiler, as well as allowing for the tuning of subsystem
constants.

These three include files perform the subsystem configuration:

• An include file that is specific to the particular compiler being used to compile the ACPI CA
subsystem provides macros and defines that must be implemented on a per-compiler basis.
These files appear in the Include/Platform directory.

• An include file that is specific to the particular machine being targeted for the ACPI CA
subsystem provides macros and defines that must be implemented on a per-machine basis.
These files appear in the Include/Platform directory.

• A global include file, acconfig.h allows for the tailoring and tuning of various subsystem
constants and options. This file appears in the Include directory

5.2 Per-Compiler Configuration
These macros and defines allow the ACPI CA subsystem to be tailored to a particular compiler.

5.2.1 ACPI_DIV_64_BY_32 (Short 64-bit Divide)
This macro performs a simple 64-bit divide with a 64-bit dividend and a 32-bit divisor. The point of
this macro is to perform a short divide on 16-bit and 32-bit platforms without invoking a double-
precision math library. Both the quotient and remainder must be returned.

5.2.2 ACPI_SHIFT_RIGHT_64 (64-bit Shift)
This macro performs a 64-bit right shift by one bit. The point of this macro is to perform a shift right
on 16-bit and 32-bit platforms without invoking a double-precision math library.

5.2.3 ACPI_EXTERNAL_XFACE
This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPI CA external interfaces (the Acpi* interfaces.)

ACPI Component Architecture Programmer Reference
R

60 Ref No SC-<xxxx>

5.2.4 ACPI_INTERNAL_XFACE
This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPI CA internal interfaces.

5.2.5 ACPI_INTERNAL_VAR_XFACE
This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all ACPI CA variable-argument list internal interfaces.

5.2.6 ACPI_SYSTEM_XFACE
This macro allows the definition of an interface type prefix (such as _cdecl, pascal, etc.) to be used
in the declaration of all interfaces to the host OS.

5.2.7 ACPI_PRINTF_LIKE_FUNC
This macro defines a suffix to be used in the definitions and prototypes of internal print functions
that accept a printf-like format string. Some compilers have the ability to perform additional
typechecking on such functions

5.2.8 ACPI_UNUSED_VAR
This macro defines a prefix to be used in the definition of variables that may not be used in a
module (such as the ACPI_MODULE_NAME). This can prevent compiler warnings for such
variables.

5.2.9 COMPILER_DEPENDENT_INT64
Defines the name of a signed 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language.

5.2.10 COMPILER_DEPENDENT_UINT64
Defines the name of an unsigned 64-bit integer on for this compiler. This macro is required because
there is (currently) no standard method to define 64-bit integers in the C language.

5.3 Per-Machine Configuration
These macros and defines allow the ACPI CA subsystem to be tailored to a particular machine or
machine architecture.

5.3.1 ACPI_ASM_MACROS
When defined, this symbol indicates that the per-machine defaults are not to be used – the per-
machine configuration has been fully specified in a per-machine configuration file.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 61

5.3.2 ACPI_FLUSH_CPU_CACHE
Defines the instruction or instructions necessary to flush the CPU cache(s) on this machine.

5.3.3 ACPI_MACHINE_WIDTH
This macro defines the standard integer width of the target machine, either 16, 32, or 64.

5.3.4 ACPI_OS_NAME
This macro defines the string that is returned by the predefined “_OS_” method in the ACPI
namespace.

5.3.5 ACPI_USE_STANDARD_HEADERS
This switch allows the use of a system-supplied C library for the Clib functions used by the
subsystem. If this switch is not set, the subsystem uses its own implementations of these functions.
Use of a system C library (when available) may be more efficient in terms of reused system code
and efficiency of the function implementations.

5.3.6 ACPI_ACQUIRE_GLOBAL_LOCK
This macro defines the code (typically assembly code) necessary to acquire the ACPI Global Lock
on this machine.

5.3.7 ACPI_RELEASE_GLOBAL_LOCK
This macro defines the code (typically assembly code) necessary to release the ACPI Global Lock
on this machine.

5.4 Other Compile-time Configuration
The subsystem is configured at compile time via various compiler switches that are described
below.

5.4.1 ACPI_APPLICATION
This switch should be set when the entire ACPI subsystem is to be run as an application on top of an
operating system instead of a driver integrated with the kernel.

5.4.2 ACPI_DEBUG
This switch enables the DEBUG_PRINT macro and various other debugging support within the
core subsystem. The code for the DEBUG_PRINT macro is only generated when the
ACPI_DEBUG switch is set; otherwise the macro is defined to be null and thus all debug code is
compiled out.

ACPI Component Architecture Programmer Reference
R

62 Ref No SC-<xxxx>

5.4.3 PARSER_ONLY
This switch is used by applications that only use the AML parser, not the interpreter. An example
application is the AcpiDump utility that simply disassembles the AML code, it does not attempt to
interpret the code.

5.5 Configuration of Subsystem Constants
The configurable subsystem constants are specified in the Include/acconfig.h header file. These
constants may be modified at either compile time by changing the constants in acconfig.h, or at run-
time by changing the contents of the global variables where these constants are stored.

5.5.1 MAX_STATE_CACHE_DEPTH
The maximum number of objects in the generic state object cache used to avoid recursive calls
within the subsystem. These are small objects, but are used frequently. A larger cache will improve
the performance of the entire subsystem (loading tables, parsing methods, and executing methods.)

5.5.2 MAX_PARSE_CACHE_DEPTH
The maximum number of objects in the parse object cache. These are the objects used to build parse
trees. A larger cache will improve the execution performance of control methods (when the parse
just-in-time strategy is used) by improving the time to parse the AML.

5.5.3 MAX_OBJECT_CACHE_DEPTH
The maximum number of objects in the interpreter operand object cache. These objects are used
during control methods to pass the operands for individual AML opcodes to the interpreter. A larger
cache will improve the performance of control method execution

5.5.4 MAX_WALK_CACHE_DEPTH
The maximum number of objects in the parse tree walk object cache. These are relatively large
objects (about 512 bytes) that are used to contain the entire state of a control method during its
execution. Each nested control method requires an additional walk object. Since only one object is
required per control method, it is not necessary to cache a large number of these objects. A few
cached walk objects are sufficient to increase the performance of control method execution and
reduce memory fragmentation.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 63

6 ACPI Core Subsystem - External
Interface Definition
This section contains documentation for the specific interfaces exported by the ACPI Core. The
interfaces are grouped based upon their functionality. These groups are closely related to the internal
modules (or sub-components) of the Core Subsystem described earlier in this document. These
interfaces are intended to be used by the OSL only. The host OS does not call these interfaces
directly. All interfaces to the ACPI Core Subsystem are prefixed by the letters “Acpi”.

6.1 Subsystem Initialization, Shutdown, and Status

6.1.1 AcpiInitializeSubsystem

Initialize all ACPI components.

ACPI_STATUS
AcpiInitializeSubsystem (

void)

PARAMETERS

None

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully initialized.

AE_ERROR The system is not capable of supporting ACPI mode.

AE_NO_MEMORY Insufficient dynamic memory to complete the ACPI
initialization.

Functional Description:

This function initializes the entire ACPI subsystem, including the OS Services Layer. It must be
called once before any of the other Acpi* interfaces are called.

ACPI Component Architecture Programmer Reference
R

64 Ref No SC-<xxxx>

6.1.2 AcpiInstallInitializationHandler

Install a global handler for initialization handling.

ACPI_STATUS
AcpiInstallInitializationHandler (

ACPI_INIT_HANDLER Handler,
UINT32 Function)

PARAMETERS

Handler A pointer to the initialization handler.

Function Reserved.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_BAD_PARAMETER The Handler parameter is invalid.

AE_ALREADY_EXISTS A global initialization handler has already been installed.

Functional Description:

This function installs a global initialization handler that is called during the subsystem initialization.

Currently, the handler is called after each Device object within the namespace has been initialized
(The _INI and _STA methods have been run on the device.)

6.1.2.1 Interface to User Callback Function

Interface to the user function that is installed via AcpiInstallInitializationHandler.

ACPI_STATUS (*ACPI_INIT_HANDLER) (
ACPI_HANDLE Object,
UINT32 Function)

PARAMETERS

Object A handle for the object that is being or has just been
initialized.

Function One of the following manifest constants:

 ACPI_INIT_DEVICE_INI – the Object is a handle to a
Device that has just been initialized.

RETURN VALUE

Status AE_OK Continue the walk

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 65

 AE_TERMINATE Stop the walk immediately

 AE_DEPTH Go no deeper into the namespace tree

 All others Abort the walk with this exception
code

Functional Description:

This function is called during subsystem initialization.

6.1.3 AcpiEnableSubsystem

Complete the ACPI Subsystem initialization and enable ACPI operations.

ACPI_STATUS
AcpiEnableSubsystem (

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

 ACPI_FULL_INITIALIZATION – Perform completed
initialization. This is the normal use of this interface

 ACPI_NO_ADDRESS_SPACE_INIT. Do not install the
default address space handlers. For debug purposes only.

 ACPI_NO_HARDWARE_INIT. Do not initialize the
ACPI hardware. For hardware-independent mode only.

 ACPI_NO_EVENT_INIT. Do not install an SCI handler
and do not initialize ACPI events. For hardware independent
mode only

 ACPI_NO_ACPI_ENABLE. Do not attempt to enter
ACPI mode. For hardware-independent mode only.

 ACPI_NO_PCI_INIT. When running _INI methods, do
not attempt to recognize and initialize the PCI Root Bridges.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

ACPI Component Architecture Programmer Reference
R

66 Ref No SC-<xxxx>

Functional Description:

This function completes initialization of the ACPI Subsystem.

6.1.4 AcpiInitializeObjects

Initialize objects within the ACPI namespace.

ACPI_STATUS
AcpiInitializeObjects (

UINT32 Flags)

PARAMETERS

Flags Specifies how the subsystem should be initialized. Must be
one of these manifest constants:

 ACPI_NO_DEVICE_INIT. Do not attempt to run the _INI
methods on devices in the ACPI namespace.

 ACPI_NO_OBJECT_INIT. Do not run the final
initialization pass to complete initialization of all address
spaces and Fields.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The ACPI namespace was successfully loaded and
initialized.

AE_NO_MEMORY Insufficient memory to build the internal namespace.

Functional Description:

This function completes initialization of the ACPI Subsystem by initializing all ACPI Devices,
Operation Regions, Buffer Fields, Buffers, and Packages. It must be called and it should only be
called after a call to AcpiEnableSubsystem. The object cache is purged after these objects are
initialized, in case an overly large number of cached objects were created during initialization
(versus the size of the caches at runtime.)

6.1.5 AcpiGetSystemInfo

Get global ACPI-related system information.

ACPI_STATUS
AcpiGetSystemInfo (

ACPI_BUFFER *OutBuffer)

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 67

PARAMETERS

OutBuffer A pointer to a location where the system information is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the system information. Upon return, the
Length field contains the minimum required buffer length.

Functional Description:

This function obtains information about the current state of the ACPI system. It will return system
information in the OutBuffer structure. Upon completion the Length field of OutBuffer will indicate
the number of bytes copied into the Pointer field of the OutBuffer buffer. This routine will never
return a partial resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

The structure that is returned in OutBuffer is defined as follows:
typedef struct _AcpiSysInfo
{

UINT32 AcpiCaVersion;
UINT32 Flags;
UINT32 TimerResolution;
UINT32 Reserved1;
UINT32 Reserved2;
UINT32 DebugLevel;
UINT32 DebugLayer;
UINT32 NumTableTypes;
ACPI_TABLE_INFO TableInfo[NUM_ACPI_TABLES];

} ACPI_SYSTEM_INFO;

Where:

AcpiCaVersion Version number of the ACPI CA core subsystem, in the
form 0xYYYYMMDD.

Flags Static information about the system:

ACPI Component Architecture Programmer Reference
R

68 Ref No SC-<xxxx>

SYS_MODE_ACPI ACPI mode is supported on this
system.

SYS_MODE_LEGACY Legacy mode is supported.

TimerResolution Resolution of the ACPI Power Management Timer. Either
24 or 32 indicating the corresponding number of bits of
resolution.

DebugLevel Current value of the global variable that controls the debug
output verbosity.

DebugLayer Current value of the global variable that controls the internal
layers whose debug output is enabled.

NumTableTypes Number of ACPI types that are directly supported by the
subsystem (FADT, FACS, DSDT, etc.)

TableInfo One entry per table type indicating the number of tables of
that type that are loaded.

6.1.6 AcpiSubsystemStatus

Obtain initialization status of the ACPI subsystem.

ACPI_STATUS
AcpiSubsystemStatus (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully initialized.

AE_ERROR The subsystem has not been initialized

Functional Description:

This function allows device drivers to determine the initialization status of the ACPI subsystem.:

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 69

6.1.7 AcpiFormatException

Return the ASCII name of an ACPI exception code.

const char *
AcpiFormatException (

ACPI_STATUS Status)

PARAMETERS

Status The ACPI status/exception code to be translated.

RETURN VALUE

Exception String A pointer to the formatted exception string.

EXCEPTIONS

None

Functional Description:

This function converts an ACPI exception code into a human-readable string. It returns the
exception name string as the function return value. The string is a const value that does not require
deletion by the caller.

6.1.8 AcpiPurgeCachedObjects

Empty all internal object caches.

ACPI_STATUS
AcpiPurgeCachedObjects (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The caches were successfully purged.

ACPI Component Architecture Programmer Reference
R

70 Ref No SC-<xxxx>

Functional Description:

This function purges all internal object caches, freeing all memory blocks: It can be used to purge
the cache after particularly large operations, or the cache can be periodically flushed to ensure that
no large amounts of stagnant cache objects are present.

6.1.9 AcpiTerminate

Shutdown all ACPI Components.

ACPI_STATUS
AcpiTerminate (

void)

PARAMETERS

None

RETURN

Status Exception code indicates success or reason for failure.

EXCEPTIONS

AE_OK The subsystem was successfully shutdown.

AE_ERROR TBD!!

Functional Description:

This function performs a shutdown of the Core Subsystem portion of the ACPI subsystem. The
namespace tables are unloaded, and all resources are freed to the host operating system. This
function should be called prior to unloading the ACPI subsystem. In more detail, the terminate
function performs the following:

Free all memory associated with the ACPI tables (either allocated or mapped memory).

Free all internal objects associated with the namespace.

Free all objects within the object caches.

Free all OS resources associated with mutual exclusion.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 71

6.2 Memory Management
The ACPI core subsystem provides memory management services that are built upon the memory
management services exported by the OS services layer. If enabled (in debug mode), the core
memory manager tracks and logs each allocation to detect the following conditions:

1) Detect attempts to release (free) an allocated memory block more than once.

2) Detect memory leaks by keeping a list of all outstanding allocated memory blocks. This list
can be examined at any time; however, the best time to find memory leaks is after the
subsystem is shutdown -- any remaining allocations represent leaked blocks.

Do not mix memory manager calls. In other words, if the Acpi* memory manager is used to
allocate memory, do not free memory via the OS Services Layer (AcpiOsFree), via the C library
(free), or directly call the OS memory management primitives.

6.2.1 AcpiAllocate

Allocate memory from the dynamic memory pool.

void *
AcpiAllocate (

UINT32 Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory cannot be assumed to be
initialized to any particular value or values.

6.2.2 AcpiCallocate

Allocate and initialize memory.

void *
AcpiCallocate (

UINT32 Size)

PARAMETERS

Size Amount of memory to allocate.

ACPI Component Architecture Programmer Reference
R

72 Ref No SC-<xxxx>

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates and initializes memory. The returned memory is guaranteed to
be initialized to all zeros.

6.2.3 AcpiFree

Free previously allocated memory.

void
AcpiFree (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via AcpiAllocate or AcpiCallocate.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 73

6.3 ACPI Hardware Management

6.3.1 AcpiEnable

Put the system into ACPI mode.

ACPI_STATUS
AcpiEnable (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully enabled.

AE_ERROR Either ACPI mode is not supported by this system (legacy
mode only), the SCI interrupt handler could not be installed,
or the system could not be transitioned into ACPI mode.

AE_NO_ACPI_TABLES The ACPI tables have not been successfully loaded.

Functional Description:

This function enables ACPI mode on the host computer system. It ensures that the system control
interrupt (SCI) is properly configured, disables SCI event sources, installs the SCI handler, and
transfers the system hardware into ACPI mode.

6.3.2 AcpiDisable

Take the system out of ACPI mode.

ACPI_STATUS
AcpiDisable (

void)

PARAMETERS

None

ACPI Component Architecture Programmer Reference
R

74 Ref No SC-<xxxx>

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK ACPI mode was successfully disabled.

AE_ERROR The system could not be transitioned out of ACPI mode.

Functional Description:

This function disables ACPI mode on the host computer system. It returns the system hardware to
original ACPI/legacy mode, disables all events, and removes the SCI interrupt handler.

6.3.3 AcpiGetRegister

Get the contents of an ACPI bit-defined Register.

ACPI_STATUS
AcpiGetRegister (

UINT32 RegisterId,
UINT32 *Value,
UINT32 Flags)

PARAMETERS

RegisterId The ID of the desired register, one of the following manifest
constants:

 ACPI_BITREG_TIMER_STATUS
 ACPI_BITREG_BUS_MASTER_STATUS
 ACPI_BITREG_GLOBAL_LOCK_STATUS
 ACPI_BITREG_POWER_BUTTON_STATUS
 ACPI_BITREG_SLEEP_BUTTON_STATUS
 ACPI_BITREG_RT_CLOCK_STATUS
 ACPI_BITREG_WAKE_STATUS
 ACPI_BITREG_TIMER_ENABLE
 ACPI_BITREG_GLOBAL_LOCK_ENABLE
 ACPI_BITREG_POWER_BUTTON_ENABLE
 ACPI_BITREG_SLEEP_BUTTON_ENABLE
 ACPI_BITREG_RT_CLOCK_ENABLE
 ACPI_BITREG_WAKE_ENABLE
 ACPI_BITREG_SCI_ENABLE
 ACPI_BITREG_BUS_MASTER_RLD
 ACPI_BITREG_GLOBAL_LOCK_RELEASE
 ACPI_BITREG_SLEEP_TYPE_A
 ACPI_BITREG_SLEEP_TYPE_B
 ACPI_BITREG_SLEEP_ENABLE
 ACPI_BITREG_ARB_DISABLE.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 75

Value A pointer to a location where the data is to be returned.

Flags Indicates whether the ACPI hardware should be locked or
not. If calling this interface with interrupts disabled, use:
ACPI_MTX_DO_NOT_LOCK. Otherwise, use
ACPI_MTX_LOCK.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

Functional Description:

This function reads the bit register specified in the RegisterId. The value returned is normalized to
bit zero. Can be used with interrupt enabled or disabled.

6.3.4 AcpiSetRegister

Get the contents of an ACPI bit-defined Register.

ACPI_STATUS
AcpiSetRegister (

UINT32 RegisterId,
UINT32 Value,
UINT32 Flags)

PARAMETERS

RegisterId The ID of the desired register, one of the following manifest
constants:

 ACPI_BITREG_TIMER_STATUS
 ACPI_BITREG_BUS_MASTER_STATUS
 ACPI_BITREG_GLOBAL_LOCK_STATUS
 ACPI_BITREG_POWER_BUTTON_STATUS
 ACPI_BITREG_SLEEP_BUTTON_STATUS
 ACPI_BITREG_RT_CLOCK_STATUS
 ACPI_BITREG_WAKE_STATUS
 ACPI_BITREG_TIMER_ENABLE
 ACPI_BITREG_GLOBAL_LOCK_ENABLE
 ACPI_BITREG_POWER_BUTTON_ENABLE
 ACPI_BITREG_SLEEP_BUTTON_ENABLE
 ACPI_BITREG_RT_CLOCK_ENABLE
 ACPI_BITREG_WAKE_ENABLE

ACPI Component Architecture Programmer Reference
R

76 Ref No SC-<xxxx>

 ACPI_BITREG_SCI_ENABLE
 ACPI_BITREG_BUS_MASTER_RLD
 ACPI_BITREG_GLOBAL_LOCK_RELEASE
 ACPI_BITREG_SLEEP_TYPE_A
 ACPI_BITREG_SLEEP_TYPE_B
 ACPI_BITREG_SLEEP_ENABLE
 ACPI_BITREG_ARB_DISABLE.

Value The data to be written.

Flags Indicates whether the ACPI hardware should be locked or
not. If calling this interface with interrupts disabled, use:
ACPI_MTX_DO_NOT_LOCK. Otherwise, use
ACPI_MTX_LOCK.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The register was read successfully.

AE_BAD_PARAMETER Invalid RegisterId.

Other The function failed at the operating system level.

Functional Description:

This function reads the bit register specified in the RegisterId. The value written must be normalized
to bit zero before calling. Can be used with interrupt enabled or disabled.

6.3.5 AcpiSetFirmwareWakingVector

Set the ROM BIOS wake vector.

ACPI_STATUS
AcpiSetFirmwareWakingVector (

void *Vector)

PARAMETERS

Vector The physical address to be stored in the waking vector.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was set successfully.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 77

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found

Functional Description:

This function sets the firmware (ROM BIOS) wake vector.

If the function fails an appropriate status will be returned and the value of the waking vector will be
undisturbed.

6.3.6 AcpiGetFirmwareWakingVector

Get the current value of the ROM BIOS wake vector.

ACPI_STATUS
AcpiGetFirmwareWakingVector (

void **OutVector)

PARAMETERS

OutVector A pointer to a location where the current vector (physical
address) is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The vector was successfully returned.

AE_BAD_PARAMETER The OutVector pointer is NULL.

AE_NO_ACPI_TABLES The FACS is not loaded or could not be found

Functional Description:

This function obtains the BIOS wake vector. This address is returned as a (void *) physical address.

If the function fails an appropriate status will be returned and the value of the OutVector location
will be undetermined.

ACPI Component Architecture Programmer Reference
R

78 Ref No SC-<xxxx>

6.3.7 AcpiGetSleepTypeData

Get the SLP_TYP data for the requested sleep state.

ACPI_STATUS
AcpiGetSleepTypeData (

UINT8 SleepState,
UINT8 *SleepTypeA,
UINT8 *SleepTypeB)

PARAMETERS

SleepState The SleepState value (0 through 5) for which the
SLP_TYPa and SLP_TYPb values will be returned.

SleepTypeA A pointer to a location where the value of SLP_TYPa will
be returned.

SleepTypeB A pointer to a location where the value of SLP_TYPb will
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Both SLP_TYP values were returned successfully.

AE_BAD_PARAMETER Either SleepState has an invalid value, or one of the
SleepType pointers is invalid.

AE_AML_NO_OPERAND Could not locate one or more of the SLP_TYP values.

AE_AML_OPERAND_TYPE One or more of the SLP_TYP objects was not a numeric
type.

Functional Description:

This function returns the SLP_TYP object for the requested sleep state.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 79

6.3.8 AcpiEnterSleepStatePrep

Prepare to enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnterSleepStatePrep (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to prepare to enter. Must be in the range 1
through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The PTS and GTS methods were successfully run

Other Exception from AcpiEvaluateObject.

Functional Description:

Prepare to enter a system sleep state.

This function evaluates the _PTS and _GTS methods.

6.3.9 AcpiEnterSleepState

Enter a system sleep state (S1-S5).

ACPI_STATUS
AcpiEnterSleepState (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to enter. Must be in the range 1 through 5.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The sleep state (S1) was successfully entered.

Other Hardware access exception.

ACPI Component Architecture Programmer Reference
R

80 Ref No SC-<xxxx>

Functional Description:

This function only returns for transitions to the S1 state or when an error occurs. Sleep states S2-S4
use the firmware waking vector during wakeup.

This function must be called with interrupts disabled.

6.3.10 AcpiLeaveSleepState

Leave (cleanup) a system sleep state (S1-S5).

ACPI_STATUS
AcpiLeaveSleepState (

UINT8 SleepState)

PARAMETERS

SleepState The sleep state to leave.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The cleanup was successful.

Other Hardware access exception.

Functional Description:

Perform cleanup after leaving a sleep state.

6.3.11 AcpiAcquireGlobalLock

Acquire the ACPI Global Lock.

ACPI_STATUS
AcpiAcquireGlobalLock (

UINT32 Timeout,
UINT32 *OutHandle)

PARAMETERS

Timeout The maximum time (in System Ticks) the caller is willing to
wait for the global lock.

OutHandle A pointer to where a handle to the lock is to be returned.
This handle is required to release the global lock.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 81

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully acquired.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_TIME The global lock could not be acquired within the specified
time limit.

Functional Description:

This function obtains exclusive access to the single system-wide ACPI Global Lock. The purpose of
the global lock is to ensure exclusive access to resources that must be shared between the operating
system and the firmware.

6.3.12 AcpiReleaseGlobalLock

Release the ACPI Global Lock.

ACPI_STATUS
AcpiReleaseGlobalLock (

UINT32 Handle)

PARAMETERS

Handle The handle that was obtained when the Global Lock was
acquired. This allows different threads to acquire and
release the lock, as long as they share the handle.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The global lock was successfully released

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

This function releases the global lock. The releasing thread may be different from the thread that
acquired the lock. However, the Handle must be the same handle that was returned by
AcpiAcquireGlobalLock.

ACPI Component Architecture Programmer Reference
R

82 Ref No SC-<xxxx>

6.3.13 AcpiGetTimerResolution

Get the resolution of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimerResolution (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the PM Timer
resolution is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The PM Timer resolution was successfully retrieved and
returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function returns the PM Timer resolution – either 24 (for 24-bit) or 32 (for 32-bit timers).

6.3.14 AcpiGetTimerDuration

Calculates the time elapsed (in microseconds) between two values of the ACPI Power
Management Timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 StartTicks,
UINT32 EndTicks,
UINT32 *OutValue)

PARAMETERS

StartTicks The value of the PM Timer at the start of a time
measurement (obtained by calling AcpiGetTimer).

EndTicks The value of the PM Timer at the end of a time
measurement (obtained by calling AcpiGetTimer).

OutValue A pointer to where the elapsed time (in microseconds) is to
be returned.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 83

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The time elapsed was successfully calculated and returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function calculates and returns the time elapsed (in microseconds) between StartTicks and
EndTicks, taking into consideration the PM Timer frequency, resolution, and counter rollovers.

• AcpiWriteRegister

6.3.15 AcpiGetTimer

Get the current value of the ACPI Power Management Timer.

ACPI_STATUS
AcpiGetTimer (

UINT32 *OutValue)

PARAMETERS

OutValue A pointer to where the current value of the ACPI Timer is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The current value of the timer was successfully retrieved
and returned.

AE_BAD_PARAMETER The OutValue pointer is NULL.

Functional Description:

This function returns the current value of the PT Timer (in ticks).

ACPI Component Architecture Programmer Reference
R

84 Ref No SC-<xxxx>

6.4 ACPI Table Management

6.4.1 AcpiGetFirmwareTable

Obtain a firmware-supplied ACPI table.

ACPI_STATUS
AcpiGetFirmwareTable (

ACPI_STRING TableSignature,
UINT32 TableInstance,
UINT32 Flags,
ACPI_TABLE_HEADER **Table)

PARAMETERS

TableSignature A string containing the ACPI-defined ASCII signature of
the desired table

TableInstance If multiple instances of the table are allowed.

Flags Current addressing mode of the processor – whether paging
is currently enabled or not – one of these manifest constants:

ACPI_PHYSICAL_ADDRESSING

ACPI_LOGICAL_ADDRESSING

Table A pointer to where the address of the requested ACPI table
is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested table was found and returned.

AE_NO_ACPI_TABLES A valid RSDP could not be located.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function locates and returns one of the ACPI tables that are supplied by the system firmware.
On IA-32 systems, this involves scanning within the first megabyte of physical memory for the
RSDP signature.

This function may be called at any time, even before the ACPI subsystem has been initialized. This
allows early access to ACPI tables -- even before the system virtual memory manager has been
started.

If the operation fails an appropriate status will be returned and the value of Table is undefined.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 85

6.4.2 AcpiFindRootPointer

Locate the RSDP via memory scan.

ACPI_STATUS
AcpiFindRootPointer (

UINT32 Flags,
ACPI_POINTER *RsdpPhysicalAddress)

PARAMETERS

Flags Current addressing mode of the processor – whether paging
is currently enabled or not – one of these manifest constants:

ACPI_PHYSICAL_ADDRESSING

ACPI_LOGICAL_ADDRESSING

RsdpPhysicalAddress A pointer to where the physical address of the ACPI RSDP
table will be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The RSDP was found and returned.

AE_NO_ACPI_TABLES A valid RSDP could not be located.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function locates and returns the ACPI Root System Description Pointer by scanning within the
first megabyte of physical memory for the RSDP signature. This is mechanism is only applicable to
IA-32 systems.

This interface should only be called from the OSL function AcpiOsGetRootPointer if the memory
scanning mechanism is appropropriate for the current platform.

If the operation fails an appropriate status will be returned and the value of RsdpPhysicalAddress is
undefined.

ACPI Component Architecture Programmer Reference
R

86 Ref No SC-<xxxx>

6.4.3 AcpiLoadTables

Load core ACPI tables and build an internal ACPI namespace.

ACPI_STATUS
AcpiLoadTables (

void)

PARAMETERS

None

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded and a handle returned.

AE_BAD_CHECKSUM The computed table checksum does not match the checksum
in the table.

AE_BAD_HEADER The table header is invalid or is not a valid type.

AE_NO_ACPI_TABLES The ACPI tables (RSDT, DSDT, FADT, etc.) could not be
found in physical memory.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function loads the ACPI tables that are pointed to by the RSDP/RSDT and installs them into
the internal ACPI namespace database. The Root System Description Pointer (RSDP) points to the
Root System Description Table (RSDT), and the remaining ACPI tables are found via pointers
contained in RSDT.

The minimum required set of ACPI tables that will allow the ACPI CA core subsystem to initialize
consists of the following:

♦ RSDT/XSDT

♦ FADT

♦ FACS

♦ DSDT

Only tables that are used directly by the ACPI subsystem are loaded. Other tables (such as the
MADT, SRAT, etc.) are obtained and consumed by different kernel subsystems and/or device
drivers.

If the operation fails an appropriate status will be returned.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 87

6.4.4 AcpiLoadTable

Load an ACPI table from a buffer.

ACPI_STATUS
AcpiLoadTable (

ACPI_TABLE_HEADER *Table)

PARAMETERS

Table A pointer to a buffer containing the entire table to be loaded.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully loaded and a handle returned.

AE_BAD_CHECKSUM The computed table checksum does not match the checksum
in the table.

AE_BAD_HEADER The table header is invalid.

AE_BAD_PARAMETER At least one of the following is true:

• The Table pointer is NULL.

AE_BAD_SIGNATURE The signature field in the table header is not one of the
supported table types.

AE_NO_MEMORY Insufficient dynamic memory to complete the operation.

Functional Description:

This function is loads a single ACPI table from the caller’s buffer and installs it into the internal
ACPI namespace database. The buffer must contain an entire ACPI Table including a valid header.
The header fields are verified, and the call will fail if it is determined that the table is invalid.

The table type (DSDT, FACS, etc.) is determined from the signature in the table header. See the
ACPI_TABLE_TYPE data type for the supported table types.

Any previously loaded table of the same table type is automatically unloaded before the new table is
installed.

If the call fails an appropriate status will be returned and the value of OutTableHandle is undefined.

ACPI Component Architecture Programmer Reference
R

88 Ref No SC-<xxxx>

6.4.5 AcpiUnloadTable

Unload a previously loaded ACPI table.

ACPI_STATUS
AcpiUnloadTable (

ACPI_TABLE_TYPE Type)

PARAMETERS

Type The type of the table to be unloaded. This must be a table
loaded by either the AcpiLoadTable or the
AcpiLoadFirmware functions.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully unloaded.

AE_BAD_PARAMETER The Type is invalid.

AE_NOT_EXIST There is no table of this type currently loaded.

Functional Description:

This function unloads a previously loaded table. The table may have been loaded from the firmware
or from a call to the AcpiLoadTable interface. For table types that allow multiple table (SSDT,
PSDT), all tables of the given type are unloaded.

6.4.6 AcpiGetTableHeader

Get the header portion of a loaded ACPI table.

ACPI_STATUS
AcpiGetTableHeader (

ACPI_TABLE_TYPE TableType,
UINT32 Instance
ACPI_TABLE_HEADER *OutTableHeader)

PARAMETERS

TableType One of the defined ACPI table types.

Instance For table types that support multiple tables, the instance of
the table to be returned. For table types that support only a
single table, this parameter must be set to one.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 89

OutTableHeader A pointer to a location where the table header is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table header was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The TableType is invalid.

• The OutTableHeader pointer is NULL.

• The table type only supports single tables, and the
Instance is not one.

AE_NOT_EXIST There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

AE_TYPE The table Type is not supported (RSDP).

Functional Description:

This function obtains the header of an installed ACPI table. The header contains a length field that
can be used to determine the size of the buffer needed to contain the entire table. This function is not
valid for the RSDP table since it does not have a standard header and is fixed length.

For table types that support more than one table, the Instance parameter is used to specify which
table header of the given type should be returned. For table types that only support single tables, the
Instance parameter must be set to one.

If the operation fails an appropriate status will be returned and the contents of OutTableHeader are
undefined.

6.4.7 AcpiGetTable

Get a loaded ACPI table.

ACPI_STATUS
AcpiGetTable (

ACPI_TABLE_TYPE TableType,
UINT32 Instance
ACPI_BUFFER *OutBuffer)

PARAMETERS

TableType One of the defined ACPI table types.

ACPI Component Architecture Programmer Reference
R

90 Ref No SC-<xxxx>

Instance For table types that support multiple tables, the instance of
the table to be returned. For table types that support only a
single table, this parameter must be set to one.

OutBuffer A pointer to location where the table is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The table was successfully located and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The TableType is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutBuffer is NULL.

• The table type only supports single tables, and the
Instance is not one.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the table. Upon return, the Length field
contains the minimum required buffer length.

AE_NOT_EXIST There is no table of this type currently loaded, or the table of
the specified Instance is not loaded.

Functional Description:

This function obtains an installed ACPI table. The caller supplies an OutBuffer large enough to
contain the entire ACPI table. The caller should call the AcpiGetTableHeader function first to
determine the buffer size needed. Upon completion the Length field of OutBuffer will indicate the
number of bytes copied into the Pointer field of the OutBuffer buffer. This table will be a complete
table including the header.

For table types that support more than one table, the Instance parameter is used to specify which
table of the given type should be returned. For table types that only support single tables, the
Instance parameter must be set to one.

If the operation fails an appropriate status will be returned and the contents of OutBuffer are
undefined.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 91

6.5 ACPI Namespace Access

6.5.1 AcpiEvaluateObject

Evaluate an ACPI namespace object and return the result.

ACPI_STATUS
AcpiEvaluateObject (

ACPI_HANDLE Object,
ACPI_STRING *Pathname,
ACPI_OBJECT_LIST *MethodParams,
ACPI_BUFFER *ReturnBuffer)

PARAMETERS

Object One of the following:

• A handle to the object to be evaluated.

• A handle to a parent object that is a prefix to the pathname.

• A NULL handle if the pathname is fully qualified.

Pathname Pathname of namespace object to evaluate. May be either an
absolute path or a path relative to the Object.

MethodParams If the object is a control method, this is a pointer to a list of
parameters to pass to the method. This pointer may be
NULL if no parameters are being passed to the method or if
the object is not a method.

ReturnBuffer A pointer to a location where the return value of the object
evaluation (if any) is placed. If this pointer is NULL, no
value is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object was successfully evaluated.

AE_AML_ERROR An unspecified error occurred during the parsing of
the AML code.

AE_AML_PARSE The control method could not be parsed due to
invalid AML code.

AE_AML_BAD_OPCODE An invalid opcode was encountered in the AML
code.

AE_AML_NO_OPERAND An required operand was missing. This could be
caused by a method that does not return any object.

ACPI Component Architecture Programmer Reference
R

92 Ref No SC-<xxxx>

AE_AML_OPERAND_TYPE An operand object is not of the required ACPI type.

AE_AML_OPERAND_VALUE An operand object has an invalid value

AE_AML_UNINITIALIZED_LOCAL A method attempted to access a local variable that
was not initialized.

AE_AML_UNINITIALIZED_ARG A method attempted to access an argument that was
not part of the argument list, or was not passed into
the method properly.

AE_AML_UNITIALIZED_ELEMENT A method attempted to use (dereference) a reference
to an element of a package object that is empty
(uninitialized).

AE_AML_NUMERIC_OVERFLOW An overflow occurred during a numeric conversion
(Such as BCD conversion.)

AE_AML_REGION_LIMIT A method attempted to access beyond the end of an
Operation Region defined boundary.

AE_ AML_BUFFER_LIMIT A method attempted to access beyond the end of a
Buffer object.

AE_ AML_PACKAGE_LIMIT A method attempted to access beyond the end of a
Package object.

AE_ AML_DIVIDE_BY_ZERO A method attempted to execute a divide instruction
with a zero divisor.

AE_AML_BAD_NAME A name contained within the AML code has one or
more invalid characters.

AE_AML_NAME_NOT_FOUND A name reference within the AML code could not be
found and therefore could not be resolved.

AE_AML_INTERNAL An error that is internal to the ACPI CA subsystem
occurred.

AE_BAD_CHARACTER An invalid character was found in the Pathname
parameter.

AE_BAD_DATA Bad or invalid data was found in a package object.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not
exactly four characters long.

AE_BAD_PARAMETER At least one of the following is true:

• Both the Object and Pathname parameters are
NULL.

• The Object handle is NULL, but the Pathname is
not absolute.

• The Pathname is relative but the Object is
invalid.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 93

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer
field of OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of the ReturnBuffer is too small to
hold the actual returned object. Upon return, the
Length field contains the minimum required buffer
length.

AE_ERROR An unspecified error occurred.

AE_NO_MEMORY Insufficient dynamic memory to complete the
request.

AE_NOT_FOUND The object referenced by the combination of the
Object and Pathname was not found within the
namespace.

AE_NULL_OBJECT A required object was missing. This is an internal
error.

AE_STACK_OVERFLOW An internal stack overflow occurred because of an
error in the AML, or because control methods or
objects are nested too deep.

AE_STACK_UNDERFLOW An internal stack underflow occurred during
evaluation.

AE_TYPE The object is of a type that cannot be evaluated.

Functional Description:

This function locates and evaluates objects in the namespace. This interface has two modes of
operation, depending on the type of object that is being evaluated:

1. If the target object is a control method, the method is executed and the result (if any) is
returned.

1. If the target is not a control method, the current “value” of that object is returned. The type of
the returned value corresponds to the type of the object; for example, the object (and the
corresponding returned result) may be a Integer, a String, or a Buffer.

Specifying a Target Object: The target object may be any valid named ACPI object. To specify the
object, a valid Object, a valid Pathname, or both may be provided. However, at least one of these
parameters must be valid.

If the Object is NULL, the Pathname must be a fully qualified (absolute) namespace path.

If the Object is non-NULL, the Pathname may be either:

1. A path relative to the Object handle (a relative pathname as defined in the ACPI specification)

2. An absolute pathname. In this case, the Object handle is ignored.

Parameters to Control Methods: If the object to be evaluated is a control method, the caller can
supply zero or more parameters that will be passed to the method when it is executed.. The
MethodParams parameter is a pointer to an ACPI_OBJECT_LIST that in turn is a counted array of
ACPI_OBJECTs. If MethodParams is NULL, then no parameters are passed to the control method.
If the Count field of MethodParams is zero, then the entire parameter is treated exactly as if it is a

ACPI Component Architecture Programmer Reference
R

94 Ref No SC-<xxxx>

NULL pointer. If the object to be evaluated is not a control method, the MethodParams field is
ignored.

Receiving Evaluation Results: The ReturnObject parameter optionally receives the results of the
object evaluation. If this parameter is NULL, the evaluation results are not returned and are
discarded. If there is no result from the evaluation of the object and no error occurred, the Length
field of the ReturnObject parameter is set to zero.

Unsupported Object Types: The object types that cannot be evaluated are the following:
ACPI_TYPE_DEVICE. Others TBD.

Exceptional Conditions: Any exceptions that occur during the execution of a control method result
in the immediate termination of the control methods. All nested control methods are also terminated,
up to and including the parent method.

EXAMPLES

Example 1: Executing the control method with an absolute path, two input parameters, with no
return value expected:

ACPI_OBJECT_LIST Params;
ACPI_OBJECT Obj[2];

/* Initialize the parameter list */

Params.Count = 2;
Params.Pointer = &Obj;

/* Initialize the parameter objects */

Obj[0].Type = ACPI_TYPE_STRING;
Obj[0].String.Pointer = “ACPI User”;

Obj[1].Type = ACPI_TYPE_NUMBER;
Obj[1].Number.Value = 0x0E00200A;

/* Execute the control method */

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._TWO” , &Params, NULL);

Example 2: Before executing a control method that returns a result, we must declare and initialize an
ACPI_BUFFER to contain the return value:

ACPI_BUFFER Results;
ACPI_OBJECT Obj;

/* Initialize the return buffer structure */

Results.Length = sizeof (Obj);
Results.Pointer = &Obj;

The three examples that follow are functionally identical.

Example 3: Executing a control method using an absolute path. In this example, there are no input
parameters, but a return value is expected.

Status = AcpiEvaluateObject (NULL,”_SB.PCI0._STA” , NULL, &Results);

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 95

Example 4: Executing a control method using a relative path. A return value is expected.

Status = AcpiPathnameToHandle (”_SB.PCI0”, &Object)
Status = AcpiEvaluateObject (Object, ”_STA” , NULL, &Results);

Example 5: Executing a control method using a relative path. A return value is expected.

Status = AcpiPathnameToHandle (”_SB.PCI0._STA”, &Object)
Status = AcpiEvaluateObject (Object, NULL, NULL, &Results);

6.5.2 AcpiGetObjectInfo

Get information about an ACPI-related device.

ACPI_STATUS
AcpiGetObjectInfo (

ACPI_HANDLE Object,
ACPI_DEVICE_INFO *OutInfo)

PARAMETERS

Object A handle to an ACPI object for which information is to be
returned.

OutInfo A pointer to a location where the device info is returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK Device info was successfully returned. See the
ACPI_DEVICE_INFO structure for valid returned fields.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The OutInfo pointer is NULL.

AE_TYPE The Device handle does not refer to an object of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains information about an object contained within the ACPI namespace. The
information returned is a composite of static internal information and the results of evaluating the
following standard ACPI device methods and objects on behalf of the device:

Type — The ACPI object type of the object
Name — The 4-character ACPI name of the object
_HID — The hardware ID of the object.
_UID — The Unique ID of the object.

ACPI Component Architecture Programmer Reference
R

96 Ref No SC-<xxxx>

_ADR — The address of the object (bus and device specific).
_STA — The current status of the object/device.

Returned Data Format: The device information is returned in the ACPI_DEVICE_INFO structure
that is defined as follows:
typedef struct
{

ACPI_OBJECT_TYPE Type;
UINT32 Name;
UINT32 Valid;
char HardwareId [9];
char UniqueId [9];
UINT32 Address;
UINT32 CurrentStatus;

} ACPI_DEVICE_INFO;

Where:

Type Is the object type code.

Name The 4-character ACPI name of the object.

Valid A bit field that indicates which of the remaining fields are
valid.

HardwareId The result of evaluating _HID for this object.

UniqueId The result of evaluating _UID for this object.

Address The result of evaluating _ADR for this object.

CurrentStatus The result of evaluating _STA method for this object.

The fields of the structure that are valid because the corresponding method or object has been
successfully found under the device are indicated by the values of the Valid bitfield via the
following constants:
ACPI_VALID_HID
ACPI_VALID_UID
ACPI_VALID_ADR
ACPI_VALID_STA

Each bit should be checked before the corresponding value in the structure can be considered valid.
None of the methods/objects that are used by this interface are required by the ACPI specification.
Therefore, there is no guarantee that all or even any of them are available for a particular device.
Even if none of the methods are found, the interface will return an AE_OK status — but none of the
bits set in the Valid field return structure will be set.

Both the _HID and _UID values can be of either type STRING or NUMBER in the ACPI tables. In
order to provide a consistent data type in the external interface, these values are always returned as
NULL terminated strings, regardless of the original data type in the source ACPI table. A data type
conversion is performed if necessary.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 97

6.5.3 AcpiGetNextObject

Get a handle to the next child ACPI object of a parent object.

ACPI_STATUS
AcpiGetNextObject (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE Parent,
ACPI_HANDLE Child,
ACPI_HANDLE *OutHandle)

PARAMETERS

Type The desired type of the next object.

Parent A handle to a parent object to be searched for the next child
object.

Child A handle to a child object. The next child object of the
parent object that matches the Type will be returned. Use
the value of NULL to get the first child of the parent.

OutHandle A pointer to a location where a handle to the next child
object is to be returned. If this pointer is NULL, the child
object handle is not returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The next object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Parent handle is invalid.

• The Child handle is invalid.

• The Type parameter refers to an invalid type

AE_NOT_FOUND The child object parameter is the last object of the given
type within the parent — a next child object was not found.
If Child is NULL, this exception means that the parent
object has no children.

Functional Description:

This function obtains the next child object of the parent object that is of type Type. Both the Parent
and the Child parameters are optional. The behavior for the various combinations of Parent and
Child is as follows:

1. If the Child is non-NULL, it is used as the starting point (the current object) for the search.

ACPI Component Architecture Programmer Reference
R

98 Ref No SC-<xxxx>

2. If the Child is NULL and the Parent is non-NULL, the search is performed starting at the
beginning of the scope.

3. If both the Parent and the Child parameters are NULL, the search begins at the start of the
namespace (the search begins at the Root Object).

If the search fails, an appropriate status will be returned and the value of OutHandle is undefined.

This interface is appropriate for use within a loop that looks up a group of objects within the internal
namespace. However, the AcpiWalkNamespace primitive implements such a loop and may be
simpler to use in your application; see the description of this interface for additional details.

6.5.4 AcpiGetParent
Get a handle to the parent object of an ACPI object.

ACPI_STATUS
AcpiGetParent (

ACPI_HANDLE Child,
ACPI_HANDLE *OutParent)

PARAMETERS

Child A handle to an object whose parent is to be returned.

OutParent A pointer to a location where the handle to the parent object
is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The parent object was successfully found and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Child handle is invalid.

• The OutParent pointer is NULL.

AE_NULL_ENTRY The referenced object has no parent. (Entries at the root
level do not have a parent object.)

Functional Description:

This function returns a handle to the parent of the Child object. If an error occurs, a status code is
returned and the value of OutParent is undefined.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 99

6.5.5 AcpiGetType

Get the type of an ACPI object.

ACPI_STATUS
AcpiGetType (

ACPI_HANDLE Object,
ACPI_OBJECT_TYPE *OutType)

PARAMETERS

Object A handle to an object whose type is to be returned.

OutType A pointer to a location where the object type is to be
returned.

RETURN

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The object type was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The OutType pointer is NULL.

Functional Description:

This function obtains the type of an ACPI namespace object. See the definition of the
ACPI_OBJECT_TYPE for a comprehensive listing of the available object types.

6.5.6 AcpiGetHandle

Get the object handle associated with an ACPI name.

ACPI_STATUS
AcpiGetHandle (

ACPI_HANDLE Parent,
ACPI_STRING *Pathname,
ACPI_HANDLE *OutHandle)

PARAMETERS

Parent A handle to the parent of the object specified by Pathname.
In other words, the Pathname is relative to the Parent. If
Parent is NULL, the pathname must be a fully qualified
pathname.

ACPI Component Architecture Programmer Reference
R

100 Ref No SC-<xxxx>

Pathname A name or pathname to an ACPI object (a NULL terminated
ASCII string). The string can be either a single segment
ACPI name or a multiple segment ACPI pathname (with
path separators).

OutHandle A pointer to a location where a handle to the object is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The pathname was successfully associated with an object
and the handle was returned.

AE_BAD_CHARACTER An invalid character was found in the pathname.

AE_BAD_PATHNAME The path contains at least one ACPI name that is not exactly
four characters long.

AE_BAD_PARAMETER At least one of the following is true:

• The Pathname pointer is NULL.

• The Pathname does not begin with a backslash
character.

• The OutHandle pointer is NULL.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

AE_NOT_FOUND One or more of the segments of the pathname refers to a
non-existent object.

Functional Description:

This function translates an ACPI pathname into an object handle. It locates the object in the
namespace via the combination of the Parent and Pathame parameters. Only the specified Parent
object will be searched for the name — this function will not perform a walk of the namespace tree
(See AcpiWalkNamespace).

The pathname is relative to the Parent. If the parent object is NULL, the Pathname must be fully
qualified (absolute), meaning that the path to the object must be a complete path from the root of the
namespace, and the pathname must begin with a backslash (‘\’).

Multiple instances of the same name under a given parent (within a given scope) are not allowed by
the ACPI specification. However, if more than one instance of a particular name were to appear
under a single parent in the ACPI DSDT, only the first one would be successfully loaded into the
internal namespace. The second attempt to load the name would collide with the first instance of the
name, and the second instance would be ignored.

If the operation fails an appropriate status will be returned and the value of OutHandle is undefined.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 101

6.5.7 AcpiGetName

Get the name of an ACPI object.

ACPI_STATUS
AcpiGetName (

ACPI_HANDLE Object,
UINT32 NameType
ACPI_BUFFER *OutName)

PARAMETERS

Object A handle to an object whose name or pathname is to be
returned.

NameType The type of name to return; must be one of these manifest
constants:

• ACPI_FULL_PATHNAME – return a complete
pathname (from the namespace root) to the object

• ACPI_SINGLE_NAME – return a single segment
ACPI name for the object (4 characters, null
terminated).

OutName A pointer to a location where the fully qualified and NULL
terminated name or pathname is to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The full pathname associated with the handle was
successfully retrieved and returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Parent handle is invalid.

• The Object handle is invalid.

• The OutName pointer is NULL.

• The Length field of OutName is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutName is NULL.

AE_BUFFER_OVERFLOW The Length field of OutName indicates that the buffer is too
small to hold the actual pathname. Upon return, the Length
field contains the minimum required buffer length.

AE_NO_NAMESPACE The namespace has not been successfully loaded.

ACPI Component Architecture Programmer Reference
R

102 Ref No SC-<xxxx>

Functional Description:

This function obtains the name that is associated with the Object parameter. The returned name can
be either a full pathname (from the root, with path segment separators) or a single segment, 4-
character ACPI name. This function and AcpiGetHandle are complementary functions, as shown in
the examples below.

EXAMPLES

Example 1: The following operations:

Status = AcpiGetName (Handle, ACPI_FULL_PATHNAME, &OutName)
Status = AcpiGetHandle (NULL, OutName.BufferPtr, &OutHandle))

Yield this result:

Handle == OutHandle;

Example 2: If Name is a 4-character ACPI name, the following operations:

Status = AcpiGetHandle (Parent, Name, &OutHandle))
Status = AcpiGetName (OutHandle, ACPI_SINGLE_NAME, &OutName)

Yield this result:

Name == OutName.BufferPtr

6.5.8 AcpiGetDevices

Walk the ACPI namespace to find objects of type Device.

ACPI_STATUS
AcpiGetDevices (

char *HID,
ACPI_WALK_CALLBACK UserFunction,
void *UserContext,
void **ReturnValue)

PARAMETERS

HID A device Hardware ID to search for. If NULL, all objects of
type Device are passed to the UserFunction.

UseFunction A pointer to a function that is called when the namespace
object is deleted:

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 103

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

AE_BAD_PARAMETER The UserFunction address is NULL.

Functional Description:

This function performs a modified depth-first walk of the namespace tree. The UserFunction is
invoked whenever an object of type Device with a matching HID is found. If the user function
returns a non-zero value, the search is terminated immediately and this value is returned to the
caller.

If HID is NULL, all objects of type Device within the namespace are passed to the User Function.

6.5.9 AcpiAttachData

Attach user data to an ACPI namespace object.

ACPI_STATUS
AcpiAttachData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler
void *Data)

PARAMETERS

Object A handle to an object to which the data will be attached.

Handler A pointer to a function that is called when the namespace
object is deleted:

Data A pointer to arbitrary user data. The pointer is stored in the
namespace with the namespace object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully attached.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

ACPI Component Architecture Programmer Reference
R

104 Ref No SC-<xxxx>

• The Data pointer is NULL.

AE_NO_MEMORY

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function allows arbitrary data to be associated with a namespace object.

6.5.10 AcpiDetachData

Remove a data attachment to a namespace object.

ACPI_STATUS
AcpiAttachData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler)

PARAMETERS

Object A handle to an object to which the data will be attached.

Handler A pointer to a function that is called when the namespace
object is deleted. This must be the same pointer used when
the original call to AcpiAttachData was used.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully detached.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

AE_NO_MEMORY

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function removes a previous association between user data and a namespace object.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 105

6.5.11 AcpiGetData

Retrieve data that was associated with a namespace object.

ACPI_STATUS
AcpiGetData (

ACPI_HANDLE Object,
ACPI_OBJECT_HANDLER Handler
void **Data)

PARAMETERS

Object A handle to an object to from which the attached data will
be returned.

Handler A pointer to a function that is called when the namespace
object is deleted: This must be the same pointer used when
the original call to AcpiAttachData was used.

Data A pointer to where the arbitrary user data pointer will be
returned. The pointer is stored in the namespace with the
namespace object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The data was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Data pointer is NULL.

AE_NO_MEMORY

AE_NO_NAMESPACE The namespace has not been successfully loaded.

Functional Description:

This function retrieves data that was previously associated with a namespace object.

ACPI Component Architecture Programmer Reference
R

106 Ref No SC-<xxxx>

6.5.12 AcpiWalkNamespace

Traverse a portion of the ACPI namespace to find objects of a given type.

ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartObject,
UINT32 MaxDepth,
ACPI_WALK_CALLBACK UserFunction,
void *UserContext,
void **ReturnValue

PARAMETERS

Type The type of object desired.

StartObject A handle to an object where the namespace walk is to begin.
The constant ACPI_ROOT_OBJECT indicates to start the
walk at the root of the namespace (walk the entire
namespace.)

MaxDepth The maximum number of levels to descend in the
namespace during the walk.

UserFunction A pointer to a user-written function that is invoked for each
matching object that is found during the walk. (See the
interface specification for the user function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

ReturnValue A pointer to a location where the (void *) return value from
the UserFunction is to be placed if the walk was terminated
early. Otherwise, NULL is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The walk was successful. Termination occurred from
completion of the walk or by the user function, depending
on the value of the return parameter.

AE_BAD_PARAMETER At least one of the following is true:

• The MaxDepth is zero.

• The UserFunction address is NULL.

• The StartObject handle is invalid.

• The Type is invalid.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 107

Functional Description:

This function performs a modified depth-first walk of the namespace tree, starting (and ending) at
the object specified by the StartObject handle. The UserFunction is invoked whenever an object that
matches the type parameter is found. If the user function returns a non-zero value, the search is
terminated immediately and this value is returned to the caller.

The point of this procedure is to provide a generic namespace walk routine that can be called from
multiple places to provide multiple services; the user function can be tailored to each task —
whether it is a print function, a compare function, etc.

6.5.12.1 Interface to User Callback Function

Interface to the user function that is invoked from AcpiWalkNamespace.

ACPI_STATUS (*ACPI_WALK_CALLBACK) (
ACPI_HANDLE ObjHandle,
UINT32 NestingLevel,
void *Context,
void **ReturnValue)

PARAMETERS

ObjHandle A handle to an object that matches the search criteria.

Nesting Level Depth of this object within the namespace (distance from
the root)

Context The UserContext value that was passed as a parameter to the
AcpiWalkNamespace function.

ReturnValue A pointer to a location where the return value (if any) from
the user function is to be stored.

RETURN VALUE

Status AE_OK Continue the walk

 AE_TERMINATE Stop the walk immediately

 AE_DEPTH Go no deeper into the namespace tree

 All others Abort the walk with this exception
code

Functional Description:

This function is called from AcpiWalkNamespace whenever a object of the desired type is found.
The walk can be modified by the exception code returned from this function. AE_TERMINATE
will abort the walk immediately, and AcpiWalkNamespace will return AE_OK to the original caller.
AE_DEPTH will prevent the walk from progressing any deeper down the current branch of the
namespace tree. AE_OK is the normal return that allows the walk to continue normally. All other
exception codes will cause the walk to terminate and the exception is returned to the original caller
of AcpiWalkNamespace.

ACPI Component Architecture Programmer Reference
R

108 Ref No SC-<xxxx>

6.6 ACPI Resource Management

6.6.1 AcpiGetCurrentResources

Get the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the current resources
are to be returned.

OutBuffer A pointer to a location where the current resource list is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource list. Upon return, the Length field
contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the current resources for a specific device. The caller must first acquire a
handle for the desired device. The resource data is placed in the buffer pointed contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 109

6.6.2 AcpiGetPossibleResources

Get the possible resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiGetPossibleResources (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the possible resources
are to be returned.

OutBuffer A pointer to a location where the possible resource list is to
be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resource list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is too
small to hold the resource table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the list of the possible resources for a specific device. The caller must first
acquire a handle for the desired device. The resource data is placed in the buffer contained in the
OutBuffer structure. Upon completion the Length field of OutBuffer will indicate the number of
bytes copied into the Pointer field of the OutBuffer buffer. This routine will never return a partial
resource structure.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

ACPI Component Architecture Programmer Reference
R

110 Ref No SC-<xxxx>

6.6.3 AcpiSetCurrentResources

Set the current resource list associated with an ACPI-related device.

ACPI_STATUS
AcpiSetCurrentResources (

ACPI_HANDLE Device,
ACPI_BUFFER *InBuffer)

PARAMETERS

Device A handle to a device object for which the current resource
list is to be set.

InBuffer A pointer to an ACPI_BUFFER containing the resources to
be set for the device.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The resources were set successfully.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The InBuffer pointer is NULL.

• The Pointer field of InBuffer is NULL.

• The Length field of InBuffer is zero.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function sets the current resources for a specific device. The caller must first acquire a handle
for the desired device. The resource data is passed to the routine the buffer pointed to by the
InBuffer variable.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 111

6.6.4 AcpiGetIRQRoutingTable

Get the ACPI Interrupt Request (IRQ) Routing Table for an ACPI-related device.

ACPI_STATUS
AcpiGetIRQRoutingTable (

ACPI_HANDLE Device,
ACPI_BUFFER *OutBuffer)

PARAMETERS

Device A handle to a device object for which the IRQ routing table
is to be returned.

OutBuffer A pointer to a location where the IRQ routing table is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The system information list was successfully returned.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle is invalid.

• The OutBuffer pointer is NULL.

• The Length field of OutBuffer is not
ACPI_ALLOCATE_BUFFER, but the Pointer field of
OutBuffer is NULL.

AE_BUFFER_OVERFLOW The Length field of OutBuffer indicates that the buffer is
too small to hold the IRQ table. Upon return, the Length
field contains the minimum required buffer length.

AE_TYPE The Device handle refers to an object that is not of type
ACPI_TYPE_DEVICE.

Functional Description:

This function obtains the IRQ routing table for a specific bus. It does so by attempting to execute the
_PRT method contained in the scope of the device whose handle is passed as a parameter.

If the function fails an appropriate status will be returned and the value of OutBuffer is undefined.

ACPI Component Architecture Programmer Reference
R

112 Ref No SC-<xxxx>

6.6.5 AcpiWalkResources

Parse an ACPI Resource List.

ACPI_STATUS
AcpiWalkResources (

ACPI_HANDLE DeviceHandle,
char *Path,
ACPI_WALK_RESOURCE_CALLBACK UserFunction,
void *UserContext)

PARAMETERS

DeviceHandle A handle to the Device for which one of the resource lists
will be walked:

Path Path to a resource method (path to either a _CRS or _PRS
method.)

UserFunction A pointer to a user-written function that is invoked for each
resource object within the resource list. (See the interface
specification for the user function below.)

UserContext A value that will be passed as a parameter to the user
function each time it is invoked.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully enabled.

AE_BAD_PARAMETER The DeviceHandle is invalid or the Path does not refer to a
_CRS or _PRS control method.

Functional Description:

This function retrieves the current or possible resource list for the specified device. The User
Function is called once for each resource in the list – freeing the caller from having to parse the list
itself.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 113

6.6.5.1 Interface to User Callback Function

Interface to the user function that is invoked from AcpiWalkResources.

ACPI_STATUS (*ACPI_WALK_RESOURCE_CALLBACK) (
ACPI_RESOURCE *Resource,
void *Context)

PARAMETERS

Resource A pointer to a single resource within the resource list.

Context The UserContext value that was passed as a parameter to the
AcpiWalkResources function.

RETURN VALUE

Status AE_OK Continue the walk

 AE_TERMINATE Stop the walk immediately

 AE_DEPTH Go no deeper into the namespace tree

 All others Abort the walk with this exception
code

Functional Description:

This function is called from AcpiWalkResource for each resource object in the resource list.

ACPI Component Architecture Programmer Reference
R

114 Ref No SC-<xxxx>

6.7 ACPI Fixed Event Management

6.7.1 AcpiEnableEvent

Enable an ACPI Fixed Event.

ACPI_STATUS
AcpiEnableEvent (

UINT32 Event,
UINT32 Flags)

PARAMETERS

Event The fixed event to be enabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER

ACPI_EVENT_GLOBAL

ACPI_EVENT_POWER_BUTTON

ACPI_EVENT_SLEEP_BUTTON

ACPI_EVENT_RTC

Flags Reserved, set to zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully enabled.

AE_BAD_PARAMETER The Event is invalid.

Functional Description:

This function enables a single ACPI fixed event.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 115

6.7.2 AcpiDisableEvent

Disable an ACPI Fixed Event.

ACPI_STATUS
AcpiDisableEvent (

UINT32 Event,
UINT32 Flags)

PARAMETERS

Event The fixed event to be disabled. This parameter must be one
of the following manifest constants:

ACPI_EVENT_PMTIMER

ACPI_EVENT_GLOBAL

ACPI_EVENT_POWER_BUTTON

ACPI_EVENT_SLEEP_BUTTON

ACPI_EVENT_RTC

Flags Reserved, set to zero.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD_PARAMETER The Event is invalid.

Functional Description:

This function disables a single ACPI fixed event.

6.7.3 AcpiClearEvent

Clear a pending ACPI Fixed Event.

ACPI_STATUS
AcpiClearEvent (

UINT32 Event)

PARAMETERS

Event The fixed event to be cleared. This parameter must be one
of the following manifest constants:

ACPI Component Architecture Programmer Reference
R

116 Ref No SC-<xxxx>

ACPI_EVENT_PMTIMER

ACPI_EVENT_GLOBAL

ACPI_EVENT_POWER_BUTTON

ACPI_EVENT_SLEEP_BUTTON

ACPI_EVENT_RTC

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully cleared.

AE_BAD_PARAMETER The Event is invalid.

Functional Description:

This function clears (zeros the status bit for) a single ACPI fixed event.

6.7.4 AcpiGetEventStatus

Obtain the status of an ACPI Fixed Event.

ACPI_STATUS
AcpiGetEventStatus (

UINT32 Event,
ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

Event The fixed event for which status will be obtained. This
parameter must be one of the following manifest constants:

ACPI_EVENT_PMTIMER

ACPI_EVENT_GLOBAL

ACPI_EVENT_POWER_BUTTON

ACPI_EVENT_SLEEP_BUTTON

ACPI_EVENT_RTC

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 117

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The event was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The EventStatus pointer is NULL or invalid

Functional Description:

This function obtains the current status of a single ACPI fixed event.

6.7.5 AcpiInstallFixedEventHandler

Install a handler for ACPI Fixed Events.

ACPI_STATUS
AcpiInstallFixedEventHandler (

ACPI_EVENT_TYPE Event,
ACPI_EVENT_HANDLER Handler,
void *Context)

PARAMETERS

Event The fixed event to be managed by this handler.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The Handler pointer is NULL.

AE_ERROR The fixed event enable register could not be written.

AE_EXIST A handler for this event is already installed.

ACPI Component Architecture Programmer Reference
R

118 Ref No SC-<xxxx>

Functional Description:

This function installs a handler for a predefined fixed event.

6.7.5.1 Interface to Fixed Event Handlers

Definition of the handler interface for Fixed Events.

typedef
UINT32 (*ACPI_EVENT_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallFixedEventHandler function.

RETURN VALUE

??? TBD.

Functional Description:

This handler is installed via AcpiInstallFixedEventHandler. It is called whenever the particular fixed
event it was installed to handle occurs.

This function executes in the context of an interrupt handler.

6.7.6 AcpiRemoveFixedEventHandler

Remove an ACPI Fixed Event handler.

ACPI_STATUS
AcpiRemoveFixedEventHandler (

ACPI_EVENT_TYPE Event,
ACPI_EVENT_HANDLER Handler)

PARAMETERS

Event The fixed event whose handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 119

AE_BAD_PARAMETER At least one of the following is true:

• The Event is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_ERROR The fixed event enable register could not be written.

AE_NOT_EXIST There is no handler installed for this event.

Functional Description:

This function removes a handler for a predefined fixed event that was previously installed via a call
to AcpiInstallFixedEventHandler.

ACPI Component Architecture Programmer Reference
R

120 Ref No SC-<xxxx>

6.8 ACPI General Purpose Event Management

6.8.1 AcpiInstallGpeBlock

Install a GPE Block Device.

ACPI_STATUS
AcpiInstallGpeBlock (

ACPI_HANDLE GpeDevice,
ACPI_GENERIC_ADDRESS *GpeBlockAddress,
UINT32 RegisterCount,
UINT32 InterruptLevel)

PARAMETERS

GpeDevice A handle for the GPE Block Device to be installed.

GpeNumber The GPE number to be enabled within the specified GPE
Block. Named GPE Block Devices always begin at zero.

RegisterCount The number of status/enable GPE register pairs in this
block.

InterruptLevel The hardware interrupt level that this GPE block is to be
associated with. Can be SCI_INT or any other system
interrupt level.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function installs a GPE Block Device. It is intended for use by a device driver that supports the
enumeration of GPE Block Devices. The caller must identify each Block Device in the ACPI
namespace (each has a _HID of ACPI0006) and obtain the resource requirements (_CRS, etc.) and
make this call for each device found.

Gpe Block Device handling is supported in the ACPI CA core subsystem because the SCI_INT is
owned by the core subystem, and the FADT-defined GPE blocks are also owned by the core. Via

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 121

this interface, the core also supports GPE Block Devices and the associated interrupts, detection,
dispatch, and GPE control method execution — thus centralizing all GPE support to the core.

6.8.2 AcpiRemoveGpeBlock

Remove a GPE Block Device.

ACPI_STATUS
AcpiRemoveGpeBlock (

ACPI_HANDLE GpeDevice)

PARAMETERS

GpeDevice A handle for the GPE Block Device to be removed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function removed a GPE Block Device that was previously installed via AcpiInstallGpeBlock.

6.8.3 AcpiEnableGpe

Enable an ACPI General Purpose Event.

ACPI_STATUS
AcpiEnableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
enabled. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

ACPI Component Architecture Programmer Reference
R

122 Ref No SC-<xxxx>

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_EVENT_WAKE_ENABLE – This GPE should
also be enabled for wake events.

 ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function enables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

6.8.4 AcpiClearGpe

Clear a pending ACPI General Purpose Event.

ACPI_STATUS
AcpiClearGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
cleared. Specify a NULL handle to indicate that the
permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 123

GpeNumber The GPE number to be cleared within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully cleared.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function clears a single General Purpose Event. Both the FADT–defined GPE blocks and GPE
Block Devices are supported. The GPE blocks defined in the FADT are permanent and installed
during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a single
logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are installed via
AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

6.8.5 AcpiGetGpeStatus

Obtain the status of an ACPI General Purpose Event.

ACPI_STATUS
AcpiGetGpeStatus (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags,
ACPI_EVENT_STATUS *EventStatus)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which status is to be obtained. Specify a NULL handle to
indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

ACPI Component Architecture Programmer Reference
R

124 Ref No SC-<xxxx>

GpeNumber The GPE number to be enabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

EventStatus Where the event status is returned. The following bits may
be set:

ACPI_EVENT_FLAG_SET

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully enabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function obtains the status of a single General Purpose Event. Both the FADT–defined GPE
blocks and GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent
and installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

6.8.6 AcpiDisableGpe

Disable an ACPI General Purpose Event.

ACPI_STATUS
AcpiDisableGpe (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
UINT32 Flags)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE to be
disabled. Specify a NULL handle to indicate that the

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 125

permanent GPE blocks defined in the FADT (GPE0 and
GPE1) are to be used.

GpeNumber The GPE number to be disabled within the specified GPE
Block. The GPE0 block always begins at zero. GPE1 begins
at GPE1_BASE (in the FADT). Named GPE Block Devices
always begin at zero.

Flags ACPI_EVENT_WAKE_DISABLE – This GPE should
also be disabled for wake events.

 ACPI_NOT_ISR – Caller is not executing from an
Interrupt Service Routine (interrupt level.)

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The GPE was successfully disabled.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeDevice is invalid or does not refer to a valid
GPE Block Device.

• The GpeNumber is out of range for the referenced
GpeDevice.

Functional Description:

This function disables a single General Purpose Event. Both the FADT–defined GPE blocks and
GPE Block Devices are supported. The GPE blocks defined in the FADT are permanent and
installed during system initialization. These permanent blocks, GPE0 and GPE1, are treated as a
single logical block differentiated by non-overlapping GPE numbers. GPE Block Devices are
installed via AcpiInstallGpeBlock during bus/device enumeration.

This function may be called from an interrupt service routine (typically a GPE handler) or a device
driver, depending on the setting of the Flags parameter.

ACPI Component Architecture Programmer Reference
R

126 Ref No SC-<xxxx>

6.8.7 AcpiInstallGpeHandler

Install a handler for ACPI General Purpose Events.

ACPI_STATUS
AcpiInstallGpeHandler (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
ACPI_GPE_HANDLER Handler,
void *Context)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which the handler is to be installed. Specify a NULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.

• The Handler pointer is NULL.

AE_EXIST A handler for this general-purpose event is already installed.

Functional Description:

This function installs a handler for a general-purpose event

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 127

6.8.7.1 Interface to General Purpose Event Handlers

Definition of the handler interface for General Purpose Events.

typedef
void (*ACPI_GPE_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiInstallGpeHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallGpeHandler. It is called whenever the particular general-
purpose event it was installed to handle occurs.

 This function executes in the context of an interrupt handler.

6.8.8 AcpiRemoveGpeHandler

Remove an ACPI General-Purpose Event handler.

ACPI_STATUS
AcpiRemoveGpeHandler (

ACPI_HANDLE GpeDevice,
UINT32 GpeNumber,
ACPI_GPE_HANDLER Handler)

PARAMETERS

GpeDevice A handle for the parent GPE Block Device of the GPE for
which the handler is to be removed. Specify a NULL handle
to indicate that the permanent GPE blocks defined in the
FADT (GPE0 and GPE1) are to be used.

GpeNumber A zero based GPE number. GPE numbers start with GPE
register bank zero, and continue sequentially through GPE
bank one.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

ACPI Component Architecture Programmer Reference
R

128 Ref No SC-<xxxx>

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

• The GpeNumber is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed

AE_NOT_EXIST There is no handler installed for this general-purpose event.

Functional Description:

This function removes a handler for a general-purpose event that was previously installed via a call
to AcpiInstallGpeHandler.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 129

6.9 ACPI Miscellaneous Handler Support

6.9.1 AcpiInstallNotifyHandler

Install a handler for notification events on an ACPI object.

ACPI_STATUS
AcpiInstallNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
ACPI_NOTIFY_HANDLER Handler,
void *Context)

PARAMETERS

Object Handle to the object for which notify events will be handled.
Notifies on this object will be dispatched to the handler. If
ACPI_ROOT_OBJECT is specified, the handler will
become a global handler that receives all (system wide)
notifications of the Type specified. Otherwise, this object
must be one of the following types:

ACPI_TYPE_DEVICE

ACPI_TYPE_PROCESSOR

ACPI_TYPE_POWER

ACPI_TYPE_THERMAL

Type Specifies the type of notifications that are to be received by
this handler:

ACPI_SYSTEM_NOTIFY – Notifications 0x00 to
0x7F

ACPI_DEVICE_NOTIFY – Notifications 0x80 to
0xFF

Handler Address of the handler to be installed.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

ACPI Component Architecture Programmer Reference
R

130 Ref No SC-<xxxx>

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Type is not a valid value.

• The Handler pointer is NULL.

AE_EXIST A handler for notifications on this object is already installed.

AE_TYPE The type of the Object is not one of the supported object
types.

Functional Description:

This function installs a handler for notify events on an ACPI object. According to the ACPI
specification, the only objects that can receive notifications are Devices and Thermal Zones.

A global handler for each notify type may be installed by using the ACPI_ROOT_OBJECT constant
as the object handle. When a notification is received, it is first dispatched to the global handler (if
there is one), and then to the device-specific notify handler (if there is one)

6.9.1.1 Interface to Notification Event Handlers

Definition of the handler interface for Notification Events.

typedef
void (*ACPI_NOTIFY_HANDLER) (

ACPI_HANDLE Device
UINT32 Value,
void *Context)

PARAMETERS

Device The handle for the device on which the notify occurred.

Value The notify value that was passed as a parameter to the AML
notify operation.

Context The Context value that was passed as a parameter to the
AcpiInstallNotifyHandler function.

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallNotifyHandler. It is called whenever a notify occurs on the
target object. If the handler is installed as a global notification handler, it is called for every notify of
the type specified when it was installed.

This function does not execute in the context of an interrupt handler.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 131

6.9.2 AcpiRemoveNotifyHandler

Remove a handler for ACPI notification events.

ACPI_STATUS
AcpiRemoveNotifyHandler (

ACPI_HANDLE Object,
UINT32 Type,
ACPI_NOTIFY_HANDLER Handler)

PARAMETERS

Object Handle to the object for which a notify handler will be
removed. If ACPI_ROOT_OBJECT is specified, the global
handler of the Type specified is removed. Otherwise, this
object must be one of the following types:

ACPI_TYPE_DEVICE

ACPI_TYPE_PROCESSOR

ACPI_TYPE_POWER

ACPI_TYPE_THERMAL

HandlerType Specifies the type of notify handler to be removed:

ACPI_SYSTEM_NOTIFY – Notifications 0x00 to
0x7F

ACPI_DEVICE_NOTIFY – Notifications 0x80 to
0xFF

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

• The Object handle is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed

AE_NOT_EXIST There is no handler installed for notifications on this object.

ACPI Component Architecture Programmer Reference
R

132 Ref No SC-<xxxx>

AE_TYPE The type of the Object is not one of the supported object
types

Functional Description:

This function removes a handler for notify events that was previously installed via a call to
AcpiInstallNotifyHandler.

6.9.3 AcpiInstallAddressSpaceHandler

Install handlers for ACPI Operation Region events.

ACPI_STATUS
AcpiInstallAddressSpaceHandler (

ACPI_HANDLE Device,
UINT32 SpaceId,
ACPI_ADR_SPACE_HANDLERHandler,
ACPI_ADR_SPACE_SETUP Setup,
void *Context)

PARAMETERS

Device Handle for the device for which a address space handler will
be installed. This object may be specified as the
ACPI_ROOT_OBJECT to request global scope. Otherwise,
this object must be one of the following types:

ACPI_TYPE_DEVICE,

ACPI_TYPE_PROCESSOR,

ACPI_TYPE_THERMAL

SpaceId The ID of the Address Space or Operation Region to be
managed by this handler.

Handler Address of the handler to be installed if the special value
ACPI_DEFAULT_HANDLER is used the handler supplied
with by the ACPI CA for that address space will be
installed.

Setup Address of a start/stop initialization/termination function
that is called when the region first becomes available and
also if and when it becomes unavailable.

Context A context value that will be passed to the handler as a
parameter.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 133

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The Device handle does not refer to an object of type
Device, Processor, ThermalZone, or the root object.

• The SpaceId is invalid.

• The Handler pointer is NULL.

AE_EXIST A handler for this address space or operation region is
already installed.

AE_NOT_EXIST ACPI_DEFAULT_HANDLER was specified for an address
space that has no default handler.

AE_NO_MEMORY There was insufficient memory to install the handler.

Functional Description:

This function installs a handler for an Address Space.

6.9.3.1 Interface to Address Space Setup Handlers

Definition of the setup (Address Space start/stop) handler interface for Operation Region
Events.

typedef
void (*ACPI_ADR _SPACE_SETUP) (

ACPI_HANDLE RegionHandle,
UINT32 Function
void *HandlerContext)
void **ReturnContext)

PARAMETERS

RegionHandle Handle to the region that is initializing or terminating

Function The type of function to be performed; must be one of the
following manifest constants:

ACPI_REGION_ACTIVATE (init)

ACPI_REGION_DEACTIVATE (terminate)

HandlerContext An address space specific Context value. Typically this is
the context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

ReturnContext An address space specific Context value. This context
subsumes the HandlerContext, and this is the context value
that is passed to the actual address space handler routine.

ACPI Component Architecture Programmer Reference
R

134 Ref No SC-<xxxx>

RETURN VALUE

None

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked to both initialize and
terminate the operation region handling code. The setup handler is first invoked with a function
value of ACPI_REGION_ACTIVATE upon the first access to the region from AML code. It is
called again with a function value of ACPI_REGION_DEACTIVATE just before the address space
handler is removed.

This function does not execute in the context of an interrupt handler.

6.9.3.2 Interface to Address Space Handlers

Definition of the handler interface for Operation Region Events.

typedef
void (*ACPI_ADR _SPACE_HANDLER) (

UINT32 Function,
UINT32 Address,
UINT32 BitWidth,
ACPI_INTEGER *Value,
void *Context)

PARAMETERS

Function The type of function to be performed; must be one of the
following manifest constants:

ADDRESS_SPACE_READ

ADDRESS_SPACE_WRITE

Address A space-specific address where the operation is to be
performed.

BitWidth The width of the operation, typically 8, 16, 32, or 64.

*Value A pointer to the value to be written (WRITE), or where the
value that was read should be returned (READ).

Context An address space specific Context value. Typically this is
the context that was passed as a parameter to the
AcpiInstallAddressSpaceHandler function.

RETURN VALUE

None

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 135

Functional Description:

This handler is installed via AcpiInstallAddressSpaceHandler. It is invoked whenever AML code
attempts to access the target Operation Region.

This function does not execute in the context of an interrupt handler.

6.9.3.3 Context for the Default PCI Address Space Handler

Definition of the context required for installation of the default PCI address space handler.

UINT32 PCIContext

Where PCIContext contains the PCI bus number and the PCI segment number. The bus number is
in the low 16 bits and the segment number in the high 16 bits.

6.9.4 AcpiRemoveAddressSpaceHandler

Remove an ACPI Operation Region handler.

ACPI_STATUS
AcpiRemoveAddressSpaceHandler (

UINT32 SpaceId,
ACPI_ADR _SPACE_HANDLER Handler)

PARAMETERS

SpaceId The ID of the Address Space or Operation Region whose
handler is to be removed.

Handler Address of the previously installed handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

AE_BAD_PARAMETER At least one of the following is true:

• The SpaceId is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed.

AE_NOT_EXIST There is no handler installed for this address space or
operation region.

ACPI Component Architecture Programmer Reference
R

136 Ref No SC-<xxxx>

Functional Description:

This function removes a handler for an Address Space or Operation Region that was previously
installed via a call to AcpiInstallAddressSpaceHandler.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 137

7 OS Services Layer - External
Interface Definition
This section contains the definitions of the interfaces that must be exported by the OS Services
Layer. The ACPI Core Subsystem requires that all of these interfaces be present. All interfaces to
the OS Services Layer that are intended for use by the ACPI Core Subsystem are prefixed by the
letters “AcpiOs”.

7.1 Environmental

7.1.1 AcpiOsInitialize

Initialize the OSL subsystem.

void *
AcpiOsInitialize (

void)

PARAMETERS

None

RETURN VALUE

None

Functional Description:

This function allows the OSL to initialize itself. It is called during initialization of the ACPI
subsystem.

7.1.2 AcpiOsTerminate

Terminate the OSL subsystem.

void *
AcpiOsTerminate (

void)

PARAMETERS

None

ACPI Component Architecture Programmer Reference
R

138 Ref No SC-<xxxx>

RETURN VALUE

None

Functional Description:

This function allows the OSL to cleanup and terminate. It is called during termination of the ACPI
subsystem.

7.1.3 AcpiOsGetRootPointer

Obtain the Root ACPI table pointer (RSDP).

ACPI_STATUS
AcpiOsGetRootPointer (

UINT32 Flags,
ACPI_POINTER **Address)

PARAMETERS

Flags Current addressing mode of the processor – whether paging
is currently enabled or not – one of these manifest constants:

ACPI_PHYSICAL_ADDRESSING

ACPI_LOGICAL_ADDRESSING

Address Where the pointer to the RSDP table is returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function returns the physical address of the.ACPI RSDP (Root System Description Pointer)
table. The mechanism used to obtain this pointer is platform and/or OS dependent. There are two
primary methods used to obtain this pointer and thus implement this interface:

1) On IA-32 platforms, the RSDP is obtained by searching the first megabyte of physical memory
for the RSDP signature (“RSD PTR “). On these platforms, this interface should be implemented via
a call to the AcpiFindRootPointer interface.

2) On IA-64 platforms, the RSDP is obtained from the EFI (Extended Firmware Interface). The
pointer in the EFI information block that is passed to the OS at OS startup.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 139

7.1.4 AcpiOsPredefinedOverride

Allow the host OS to override a predefined ACPI object.

ACPI_STATUS
AcpiOsPredefinedOverride (

ACPI_PREDEFINED_NAMES *PredefinedObject,
ACPI_STRING **NewValue)

PARAMETERS

PredefinedObject A pointer to a predefined object (name and initial value.)

NewValue Where a new value for the predefined object is returned.
NULL if there is no override for this object.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override the predefined objects in the ACPI namespace.

7.1.5 AcpiOsTableOverride

Allow the host OS to override a firmware ACPI table.

ACPI_STATUS
AcpiOsTableOverride (

ACPI_TABLE_HEADER *ExistingTable,
ACPI_TABLE_HEADER **NewTable)

PARAMETERS

ExistingTable A pointer to the existing ACPI table header.

NewTable Where the pointer to the replacement table is returned. The
OSL returns NULL if no replacement is provided.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function allows the host to override the ACPI table that was found in the firmware. The OS can
examine the header for table signature and version number and decide to replace it if desired.

ACPI Component Architecture Programmer Reference
R

140 Ref No SC-<xxxx>

7.2 Memory Management
These interfaces provide an OS-independent memory management interface.

7.2.1 AcpiOsMapMemory

Map physical memory into the caller’s address space.

ACPI_STATUS
AcpiOsMapMemory (

ACPI_PHYSICAL_ADDRESS PhysicalAddress,
ACPI_SIZE Length,
void **LogicalAddress)

PARAMETERS

PhysicalAddress A full physical address of the memory to be mapped into the
caller’s address space.

Length The amount of memory to be mapped starting at the given
physical address.

LogicalAddress Where the pointer to the mapped memory is returned. Only
valid if the return status is AE_OK

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The physical address was successfully mapped to the
returned logical address.

AE_BAD_ADDRESS The physical address does not refer to valid memory on the
system.

AE_NO_MEMORY There was insufficient memory to allocate the necessary
page tables to complete the operation.

Functional Description:

This function maps a physical address into the caller’s address space. A logical pointer is returned.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 141

7.2.2 AcpiOsUnmapMemory

Remove a physical to logical memory mapping.

void
AcpiOsUnmapMemory (

void *LogicalAddress,
ACPI_SIZE Length)

PARAMETERS

LogicalAddress The logical address that was returned from a previous call to
AcpiOsMapMemory.

Length The amount of memory that was mapped. This value must
be identical to the value used in the call to
AcpiOsMapMemory.

RETURN VALUE

None

Functional Description:

This function deletes a mapping that was created by AcpiOsMapMemory.

7.2.3 AcpiOsGetPhysicalAddress

Translate a logical address to a physical address.

ACPI_STATUS
AcpiOsGetPhysicalAddress (

void *LogicalAddress,
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)

PARAMETERS

LogicalAddress The logical address to be translated.

PhysicalAddress The physical memory address of the logical address.

RETURN VALUE

AE_OK The logical address translation was successfully.

AE_ERROR An error occurred in the translation system call.

AE_BAD_PARAMETER One or both of the parameters are NULL, no translation was
attempted.

ACPI Component Architecture Programmer Reference
R

142 Ref No SC-<xxxx>

Functional Description:

This function translates a logical address to its physical address location.

7.2.4 AcpiOsAllocate

Allocate memory from the dynamic memory pool.

void *
AcpiOsAllocate (

ACPI_SIZE Size)

PARAMETERS

Size Amount of memory to allocate.

RETURN VALUE

Memory A pointer to the allocated memory. A NULL pointer is
returned on error.

Functional Description:

This function dynamically allocates memory. The returned memory is not assumed to be initialized
to any particular value or values.

7.2.5 AcpiOsFree

Free previously allocated memory.

void
AcpiOsFree (

void *Memory)

PARAMETERS

Memory A pointer to the memory to be freed.

RETURN VALUE

None

Functional Description:

This function frees memory that was previously allocated via AcpiOsAllocate.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 143

7.2.6 AcpiOsReadable

Check if a memory region is readable.

BOOLEAN
AcpiOsReadable (

void *Memory
UINT32 Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length The length of the memory region, in bytes.

RETURN VALUE

TRUE If the entire memory region is readable without faults

FALSE If one or more bytes within the region are unreadable

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is readable.
Used to validate input parameters to the ACPI subsystem.

7.2.7 AcpiOsWritable

Check if a memory region is writable (and readable).

BOOLEAN
AcpiOsWritable (

void *Memory,
UINT32 Length)

PARAMETERS

Memory A pointer to the memory region to be checked.

Length The length of the memory region, in bytes.

RETURN VALUE

TRUE If the entire memory region is both readable and writable
without faults

FALSE If one or more bytes within the region are unreadable or
unwritable.

ACPI Component Architecture Programmer Reference
R

144 Ref No SC-<xxxx>

Functional Description:

This function validates that a pointer to a memory region is valid and the entire region is both
writable and readable. Used to validate input parameters to the ACPI subsystem..

7.3 Multithreading and Scheduling Services

7.3.1 AcpiOsGetThreadId

Obtain the ID of the currently executing thread.

UINT32
AcpiOsGetThreadId (

void)

PARAMETERS

None

RETURN VALUE

ThreadId A unique value that represents the ID of the currently
executing thread. For single threaded implementations, a
constant integer is acceptable. The value 0xFFFFFFFF (-1)
is reserved and must not be returned by this interface.

Functional Description:

This function returns the ID of the currently executing thread. The value must be non-zero and must
be unique to the executing thread.

7.3.2 AcpiOsQueueForExecution

Schedule a procedure for deferred execution.

ACPI_STATUS
AcpiOsQueueForExecution (

UINT32 Priority,
OSL_EXECUTION_CALLBACK Function,
void *Context)

PARAMETERS

Priority Requested priority of the execution – one of these
manifest constants:

OSL_PRIORITY_HIGH

OSL_PRIORITY_MED

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 145

OSL_PRIORITY_LO

Function Address of the procedure to execute.

Context A context value to be passed to the called procedure.

RETURN VALUE

Status Exception code that indicates success or reason for
failure.

EXCEPTIONS

AE_OK The procedure was successfully queued for execution by
the host operating system. This does not indicate that the
procedure has actually executed, however.

AE_BAD_PARAMETER At least one of the following is true:

• The Priority is invalid.

• The Function pointer is NULL.

Functional Description:

This function queues a procedure for later scheduling and execution.

7.3.3 AcpiOsSleep

Suspend the running task (course granularity).

ACPI_STATUS
AcpiOsSleep (

UINT32 Seconds,
UINT32 Milliseconds)

PARAMETERS

Seconds The number of whole seconds to sleep.

Milliseconds The number of partial seconds to sleep, in milliseconds.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The running thread slept for the time specified.

AE_BAD_PARAMETER TBD!!!!

AE_ERROR The running thread did not sleep because of a host OS error.

ACPI Component Architecture Programmer Reference
R

146 Ref No SC-<xxxx>

Functional Description:

This function sleeps for the specified time. Execution of the running thread is suspended for this
time. The sleep granularity is one millisecond.

7.3.4 AcpiOsStall

Suspend the running task (fine granularity).

ACPI_STATUS
AcpiOsSleepUsec (

UINT32 Microseconds)

PARAMETERS

Microseconds The amount of time to delay in microseconds.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The running thread slept for the time specified.

AE_ERROR The running thread did not sleep because of a host OS error.

Functional Description:

This function sleeps for the specified time. Execution of the running thread is suspended for this
time. The sleep granularity is one microsecond.

7.4 Mutual Exclusion and Synchronization
Thread synchronization and locking.

These interfaces MUST perform parameter validation of the input handle to at least the extent of
detecting a null handle and returning the appropriate exception.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 147

7.4.1 AcpiOsCreateSemaphore

Create a semaphore.

ACPI_STATUS
AcpiOsCreateSemaphore (

UINT32 MaxUnits,
UINT32 InitialUnits,
ACPI_HANDLE *OutHandle)

PARAMETERS

MaxUnits The maximum number of units this semaphore will be
required to accept.

InitialUnits The initial number of units to be assigned to the semaphore.

OutHandle A pointer to a location where a handle to the semaphore is
to be returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER At least one of the following is true:

• The InitialUnits is invalid.

• The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a standard semaphore. The MaxUnits parameter allows the semaphore to be tailored to
specific uses. For example, a MaxUnits value of one indicates that the semaphore is to be used as a
mutex. The underlying OS object used to implement this semaphore may be different than if
MaxUnits is greater than one (thus indicating that the semaphore will be used as a general purpose
semaphore.) The ACPI Core Subsystem creates semaphores of both the mutex and general-purpose
variety.

ACPI Component Architecture Programmer Reference
R

148 Ref No SC-<xxxx>

7.4.2 AcpiOsDeleteSemaphore

Delete a semaphore.

ACPI_STATUS
AcpiOsDeleteSemaphore (

ACPI_HANDLE Handle)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully deleted.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Delete a semaphore.

7.4.3 AcpiOsWaitSemaphore

Wait for units from a semaphore.

ACPI_STATUS
AcpiOsWaitSemaphore (

ACPI_HANDLE Handle,
UINT32 Units,
UINT32 Timeout)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

Units The number of units the caller is requesting.

Timeout How long the caller is willing to wait for the requested
units. The timeout is specified in milliseconds. A value of
0xFFFFFFFF (-1) indicates that the calling thread is willing
to wait forever.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 149

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The requested units were successfully received.

AE_BAD_PARAMETER The Handle is invalid.

AE_TIME The units could not be acquired within the specified time
limit.

Functional Description:

Wait for the specified number of units from a semaphore.

Implementation notes:

1. The implementation of this interface must support timeout values of zero. This is frequently
used to determine if a call to the interface with an actual timeout value would block. In this
case, AcpiOsWaitSemaphore must return either an E_OK if the units were obtained
immediately, or an AE_TIME to indicate that the requested units are not available. Single
threaded OSL implementations should always return AE_OK for this interface.

2. The implementation must also support arbitrary timed waits in order for ASL functions such
as Wait () to work properly.

7.4.4 AcpiOsSignalSemaphore

Send units to a semaphore.

ACPI_STATUS
AcpiOsSignalSemaphore (

ACPI_HANDLE Handle,
UINT32 Units)

PARAMETERS

Handle A handle to a semaphore object that was returned by a
previous call to AcpiOsCreateSemaphore.

Units The number of units to send to the semaphore.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully signaled.

AE_BAD_PARAMETER The Handle is invalid.

ACPI Component Architecture Programmer Reference
R

150 Ref No SC-<xxxx>

AE_LIMIT The semaphore has already been signaled MaxUnits times.
No more units can be accepted.

Functional Description:

Send the requested number of units to a semaphore. Single threaded OSL implementations should
always return AE_OK for this interface.

7.4.5 AcpiOsCreateLock

Create a spin lock.

ACPI_STATUS
AcpiOsCreateLock (

ACPI_HANDLE *OutHandle)

PARAMETERS

OutHandle A pointer to a location where a handle to the lock is to be
returned.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The semaphore was successfully created.

AE_BAD_PARAMETER The OutHandle pointer is NULL.

AE_NO_MEMORY Insufficient memory to create the semaphore.

Functional Description:

Create a spin lock. Spin locks are used in the ACPI CA subsystem only when there is requirement
for mutual exclusion on data structures that are accessed by both interrupt handlers and normal code.

7.4.6 AcpiOsDeleteLock

Delete a spin lock.

ACPI_STATUS
AcpiOsDeleteLock (

ACPI_HANDLE Handle)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 151

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The Lock was successfully deleted.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Delete a spin lock.

7.4.7 AcpiOsAcquireLock

Acquire a spin lock.

ACPI_STATUS
AcpiOsAcquireLock (

ACPI_HANDLE Handle,
UINT32 Flags)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

Flags One of the following manifest constants:

ACPI_ISR This call is being made from an
interrupt handler.

ACPI_NON_ISR This call is not being made from an
interrupt handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The lock was successfully acquired.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Wait for and acquire a spin lock. May be called from interrupt handlers, GPE handlers, and Fixed
event handlers. Single threaded OSL implementations should always return AE_OK for this
interface.

ACPI Component Architecture Programmer Reference
R

152 Ref No SC-<xxxx>

7.4.8 AcpiOsReleaseLock

Release a spin lock.

ACPI_STATUS
AcpiOsReleaseLock (

ACPI_HANDLE Handle,
UINT32 Flags)

PARAMETERS

Handle A handle to a lock object that was returned by a previous
call to AcpiOsCreateLock.

Flags One of the following manifest constants:

ACPI_ISR This call is being made from an
interrupt handler.

ACPI_NON_ISR This call is not being made from an
interrupt handler.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The lock was successfully released.

AE_BAD_PARAMETER The Handle is invalid.

Functional Description:

Release a previouslly acquired spin lock. Single threaded OSL implementations should always
return AE_OK for this interface.

7.5 Interrupt Handling
Interrupt handler installation and removal.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 153

7.5.1 AcpiOsInstallInterruptHandler

Install a handler for a hardware interrupt level.

ACPI_STATUS
AcpiOsInstallInterruptHandler (

UINT32 InterruptLevel,
OSL_HANDLER Handler,
void *Context)

PARAMETERS

InterruptLevel Interrupt level that the handler will service.

Handler Address of the handler.

Context A context value that is passed to the handler when the
interrupt is dispatched.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully installed.

AE_BAD_PARAMETER At least one of the following is true:

• The InterruptNumber is invalid.

• The Handler pointer is NULL.

AE_EXIST A handler for this interrupt level is already installed.

Functional Description:

This function installs an interrupt handler for a hardware interrupt level. The ACPI driver must
install an interrupt handler to service the SCI (System Control Interrupt) which it owns. The
interrupt level for the SCI interrupt is obtained from the ACPI tables.

ACPI Component Architecture Programmer Reference
R

154 Ref No SC-<xxxx>

7.5.1.1 Interface to OS-independent Interrupt Handlers

Definition of the interface for OS-independent interrupt handlers.

typedef
UINT32 (*OSL_HANDLER) (

void *Context)

PARAMETERS

Context The Context value that was passed as a parameter to the
AcpiOsInstallInterruptHandler function.

RETURN VALUE

HandlerActionTaken The handler should return one of the following manifest
constants:

INTERRUPT_HANDLED

INTERRUPT_NOT_HANDLED

INTERRUPT_ERROR

Functional Description:

The OS-independent interrupt handler must be called from an OSL interrupt handler “wrapper” that
exists within the OS Services Layer. It is the responsibility of the OS Services Layer to manage the
installed interrupt handler(s), and dispatch interrupts to the handler(s) appropriately.

7.5.2 AcpiOsRemoveInterruptHandler

Remove an interrupt handler.

ACPI_STATUS
AcpiOsRemoveInterruptHandler (

UINT32 InterruptNumber,
OSL_HANDLER Handler)

PARAMETERS

InterruptNumber Interrupt number that the handler is currently servicing.

Handler Address of the handler that was previously installed.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

EXCEPTIONS

AE_OK The handler was successfully removed.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 155

AE_BAD_PARAMETER At least one of the following is true:

• The InterruptNumber is invalid.

• The Handler pointer is NULL.

• The Handler address is not the same as the one that is
installed

AE_NOT_EXIST There is no handler installed for this interrupt level.

Functional Description:

Remove a previously installed hardware interrupt handler.

7.6 Address Space Access

7.6.1 Memory and Memory Mapped I/O
These interfaces allow the OS Services Layer to implement memory access in any manner that is
acceptable to the host OS. The actual hardware I/O instructions may execute within the OS Services
Layer itself, or these calls may be translated into additional OS calls — such as calls to a Hardware
Abstraction Component.

These calls are used by the ACPI CA for small amounts of data transfer only, such as memory
mapped I/O. For large transfers (such as reading the ACPI tables), the ACPI CA code will call
AcpiOsMapMemory instead.

7.6.1.1 AcpiOsReadMemory

Read a value from a memory location.

ACPI_STATUS
AcpiOsReadMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT32 *Value,
UINT32 Width)

PARAMETERS

Address Memory address to be read.

Value A pointer to a location where the data is to be returned.

Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

ACPI Component Architecture Programmer Reference
R

156 Ref No SC-<xxxx>

Functional Description:

This function is used to read a data from the specified memory location. The data is zero extended to
fill the 32-bit return value even if the bit width of the location is less than 32. In other words, a full
32 bits are written to the return Value regardless of the number of bits that were read from the
memory at Address. The caller must ensure that no data will be overwritten by this call.

7.6.1.2 AcpiOsWriteMemory

Write a value to a memory location.

ACPI_STATUS
AcpiOsWriteMemory (

ACPI_PHYSICAL_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Memory address where data is to be written.

Value Data to be written to the memory location.

Width The memory width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified memory location. If the bit width of the memory location
is less than 32, only the lower significant bits of the Value parameter are written.

7.6.2 Port Input/Output
These interfaces allow the OS Services Layer to implement hardware I/O services in any manner
that is acceptable to the host OS. The actual hardware I/O instructions may execute within the OS
Services Layer itself, or these calls may be translated into additional OS calls — such as calls to a
Hardware Abstraction Component.

7.6.2.1 AcpiOsReadPort

Read a value from an input port.

ACPI_STATUS
AcpiOsReadPort (

ACPI_IO_ADDRESS Address,
UINT32 *Value,
UINT32 Width)

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 157

PARAMETERS

Address Hardware I/O port address to read from.

Value A pointer to a location where the data is to be returned.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified input port. The data is zero extended to fill the 32-bit
return value even if the bit width of the port is less than 32.

7.6.2.2 AcpiOsWritePort

Write a value to an output port.

ACPI_STATUS
AcpiOsWritePort (

ACPI_IO_ADDRESS Address,
UINT32 Value,
UINT32 Width)

PARAMETERS

Address Hardware I/O port address to read from.

Value The value to be written.

Width The port width in bits, either 8, 16, or 32.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified input port. If the bit width of the port is less than 32, only
the lower significant bits of the Value parameter are written.

7.6.3 PCI Configuration Space
These interfaces allow the OS Services Layer to implement PCI Configuration Space services in any
manner that is acceptable to the host OS. The actual hardware I/O instructions may execute within
the OS Services Layer itself, or these calls may be translated into additional OS calls — such as
calls to a Hardware Abstraction Component.

ACPI Component Architecture Programmer Reference
R

158 Ref No SC-<xxxx>

7.6.3.1 AcpiOsReadPciConfiguration

Read a value from a PCI configuration register.

ACPI_STATUS
AcpiOsReadPciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
ACPI_INTEGER *Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be read from.

Value A pointer to a location where the data is to be returned.

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function reads data from the specified PCI configuration port. The data is zero extended to fill
the 64-bit return value even if the bit width of the location is less than 64.

7.6.3.2 AcpiOsWritePciConfiguration

Write a value to a PCI configuration register.

ACPI_STATUS
AcpiOsWritePciConfiguration (

ACPI_PCI_ID PciId,
UINT32 Register,
ACPI_INTEGER Value,
UINT32 Width)

PARAMETERS

PciId The full PCI configuration space address, consisting of a
segment number, bus number, device number, and function
number.

Register The PCI register address to be written to.

Value Data to be written.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 159

Width The register width in bits, either 8, 16, 32, or 64.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function writes data to the specified PCI configuration port. If the bit width of the register is
less than 64, only the lower significant bits of the Value are written.

7.6.3.3 AcpiOsDerivePciId

Derive and update a PCI ID for a PCI device object and PCI operation region.

ACPI_STATUS
AcpiOsDerivePciId (

ACPI_HANDLE DeviceHandle,
ACPI_HANDLE PciRegionHandle,
ACPI_PCI_ID **PciId)

PARAMETERS

DeviceHandle A handle to the PCI device.

PciRegionHandle A handle to the PCI configuration space Operation Region.

PciId Input: The full PCI ID (The full PCI configuration space
address, consisting of a segment number, bus number,
device number, and function number) as obtained from
control methods within the BIOS ACPI tables.

 Output: Where the derived PCI ID is returned. Some or all
of the PCI ID subfields may be updated by this function.

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function derives a full PCI ID for a PCI device, consisting of a Segment number, a Bus
number, and a Device number.

The PCI hardware dynamically configures PCI bus numbers depending on the bus topology
discovered during system initialization. The AcpiOsDerivePciId function is invoked by the ACPI
CA subsystem during configuration of a PCI_Config Operation Region in order to (possibly) update
the Bus number in the PciId with the actual Bus number as determined by the hardware and
operating system configuration.

The PciId parameter is initially populated by the ACPI CA subsystem during the Operation Region
initialization. ACPI CA then calls AcpiOsDerivePciId, which is expected to make any necessary
modifications to the Segment, Bus, or Device number PCI ID subfields as appropriate for the
current hardware and OS configuration.

ACPI Component Architecture Programmer Reference
R

160 Ref No SC-<xxxx>

7.7 Stream I/O
These interfaces provide formatted stream I/O. Used mainly for debug output, these functions may
be redirected to whatever output device or file is appropriate for the host operating system.

7.7.1 AcpiOsPrintf

Formatted stream output.

INT32
AcpiOsPrintf (

OSL_FILE *Stream,
const char *Format,
… <variable argument list>)

PARAMETERS

Stream Open stream to write to. NULL is defined to be the
debugger output channel.

Format A standard print format string.

… Variable parameter list.

RETURN VALUE

Count Number of parameters successfully printed. –1 on error.

Functional Description:

This function provides formatted output to an open OSL stream.

7.7.2 AcpiOsVprintf

Formatted stream output.

INT32
AcpiOsVprintf (

OSL_FILE *Stream,
const char *Format,
va_list Args)

PARAMETERS

Stream Open stream to write to. NULL is defined to be the
debugger output channel.

Format A standard printf format string.

Args A variable parameter list.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 161

RETURN VALUE

Count Number of parameters successfully printed. –1 on error.

Functional Description:

This function provides formatted output to an open OSL stream via the va_list argument format.

7.7.3 AcpiOsRedirectOutput

Redirect the debug output.

void
AcpiOsRedirectOutput (

void *Destination)

PARAMETERS

Destination An open file handle or pointer. Debug output will be
redirected to this handle/pointer. The format of this
parameter is OS-specific.

RETURN VALUE

None

Functional Description:

This function redirects the output of AcpiOsPrintf and AcpiOsVprintf to the specified destination.
Usually used to redirect output to a file.

7.8 Miscellaneous

7.8.1 AcpiOsSignal

Break to the debugger or display a breakpoint message.

ACPI_STATUS
AcpiOsSignal (

UINT32 Function,
void *Info)

PARAMETERS

Function Signal to be sent to the host operating system – one of these
manifest constants:

ACPI_SIGNAL_FATAL

ACPI Component Architecture Programmer Reference
R

162 Ref No SC-<xxxx>

ACPI_SIGNAL_BREAKPOINT

RETURN VALUE

Status Exception code that indicates success or reason for failure.

Functional Description:

This function is used to pass various signals and notifications to the host operating system.

7.8.1.1 ACPI_SIGNAL_FATAL

This signal corresponds to the AML Fatal opcode. It is sent to the host OS only when this opcode is
encountered in the AML stream. The host OS may or may not return control from this signal.

The definition of the Info structure for this signal is as follows:

typedef struct AcpiFatalInfo

{

UINT32 Type;

UINT32 Code;

UINT32 Argument;

} ACPI_SIGNAL_FATAL_INFO;

7.8.1.2 ACPI_SIGNAL_BREAKPOINT
This signal corresponds to the AML Breakpoint opcode. The OSL implements a “Breakpoint”
operation as appropriate for the host OS. If in debug mode, this interface may cause a break into the
host kernel debugger.

The definition of the Info structure for this signal is as follows:

char *BreakpointMessage;

7.8.2 AcpiOsGetLine

Get a input line of data.

ACPI_STATUS
AcpiOsGetLine (

char *Buffer)

PARAMETERS

Message A message string related to the breakpoint

RETURN VALUE

Status Exception code that indicates success or reason for failure.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 163

Functional Description:

The purpose of this function is to support the ACPI Debugger, and it is therefore optional depending
on whether ACPI debugger support is desired.

ACPI Component Architecture Programmer Reference
R

164 Ref No SC-<xxxx>

8 ACPI Debugger
8.1 Overview

The ACPI/AML Debugger is an optional subcomponent of the ACPI CA Core Subsystem. It can be
operated standalone or in conjunction with (or as an extension of) a native kernel debugger. The
debugger provides the ability to load ACPI tables, dump internal data structures, execute control
methods, disassemble control methods, single step control methods, and set breakpoints within
control methods.

8.2 Supported Environments
The debugger can be executed in a ring 0 (kernel) or ring 3 (application) environment. The
following combinations of debugger and front-end (user-interface) are supported:

• Ring 0 Debugger, Ring 0 Front-End: In this case, the front-end is a host kernel debugger, and
the Debugger operates as an extension to the host debugger.

• Ring 0 Debugger, Ring 3 Front-End. In this mode, the front-end is a ring 3 application that
obtains the command lines from the user and sends them to the debugger executing in Ring 0.
The actual mechanism used for this communication is dependent on the host operating
system.

• Ring 3 Debugger, Ring 3 Front-End. In this mode, the entire ACPI CA subsystem (including
the debugger) resides in a Ring 3 application. A single thread can be used for the user
interface, debugger, and AML control method execution.

8.2.1 The AcpiExec Utility
An example of the Ring3/Ring3 model of execution is the Windows-based AcpiExec utility. This
Windows application includes the entire ACPI CA subsystem (including the Debugger) and allows
the user to load ACPI tables from files and execute methods contained in the tables.

Of course, hardware and memory access from Ring 3 is very limited.

8.3 Debugger Architecture
The ACPI debugger consists of the following architectural elements:

• A command line interpreter that receives entire command lines from the host, parses them
into commands and parameters, and dispatches the request to the appropriate handler for the
command.

• A group of modules that implement the various debugger commands.

• A group of callback routines that are invoked by the interpreter/dispatcher during the
execution control methods. These callbacks enable the single stepping of control methods and
the display of arguments to each executed control method.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 165

When executing in a Ring 0 environment, the debugger initialization creates a separate thread for
the debugger CLI. This threads performs the following tasks until the debugger is shut down:

1. Wait for a command line by calling the AcpiOsGetLine interface

2. Execute the command

All output from the debugger is via the AcpiOsPrint and AcpiOsVprintf interfaces.

The overall architecture of the ACPI Debugger is shown in the diagram below. Note how the
Debugger CLI uses the AcpiOsGetLine interface to obtain user command lines, and how output
from the entire debugger and ACPI subsystem can be directed to the console, a file, or both via the
implementation of the AcpiOsPrint interface within the OSL layer. Also note how the debugger and
ACPI subsystem can reside in a different protection ring than the user console support and file I/O
support.

Figure 9. ACPI Debugger Architecture

OsdPrint()

Console Debugger Command
Line Interpreter

Debugger Command Implementations

ACPI CA Core Subsystem
Debug
Output

File

OS-Dependent Layer

OsdGetLine()

Ring3 or Ring0 Ring3 or Ring0

8.4 Configuration and Installation
The basic idea behind the debugger thread is that it receives a command line from somewhere and
then asynchronously executes it. The command line can come from a ring 3 application (a debugger
front-end), or it can come from the resident kernel debugger (you would install a debugger
extension that forwards command lines to the debugger.)

With this in mind, there are several key components of the debugger:

1. DbInitialize – Initializes the debugger semaphores and creates the debugger thread,
DbExecuteThread

2. DbCommandDispatch – This is the actual command execution code

ACPI Component Architecture Programmer Reference
R

166 Ref No SC-<xxxx>

3. DbExecuteThread – Waits for a command to become available (as indicated by the
MTX_DEBUG_CMD_READY mutex), executes the command, (via DbCommandDispatch),
then signals command completion via the MTX_DEBUG_CMD_COMPLETE mutex.

4. DbUserCommands – An example command loop that must execute in its own thread (this is
the caller thread, not a thread that is part of the debugger). This loop obtains a command line
via AcpiOsGetLine, puts it into the LineBuf buffer, and signals the DbExecuteThread that a
command line is available. It is not necessary to use this procedure, however, if command
lines become available from somewhere besides AcpiOsGetLine.

5. DbSingleStep – Called from the dispatcher just before an AML opcode is executed.
Implements its own command loop that obtains command lines from either the
MTX_DEBUG_CMD_READY mutex (multi-thread mode), or by calling AcpiOsGetLine
directly (single thread mode). Drops out of the loop when the control method is aborted or is
allowed to continue running (perhaps just to the next opcode…)

This is the basic thread model and handshake with the outside world. To integrate the debugger into
a specific environment, it is your responsibility to get command lines to the DbExecuteThread via
the LineBuf and the MTX_DEBUG_CMD_READY mutex. Alternatively, you can just call the
DbCommandDispatch directly if you don’t need an asynchronous debugger thread. Additional
explanation follows.

The AcpiExec Ring3 application uses DbUserCommands to process command lines
(DbUserCommands is actually called from aemain.c). However, if integrating with a kernel
debugger, you will probably want to implement your own mechanism instead of using the
DbUserCommands loop. I would imagine this would entail the following:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Signal the DbExecuteThread that a command is available. (MTX_DEBUG_CMD_READY).

4. Wait for the command to complete (MTX_DEBUG_CMD_COMPLETE).

5. Return to the kernel debugger.

If you don’t need the extra debugger thread, you can simply execute commands in the caller’s
context:

1. Install a small extension to the kernel debugger that receives command lines intended for that
extension.

2. Copy the command line to the LineBuf.

3. Call DbCommandDispatch to execute the command directly.

4. Return to the kernel debugger.

The behavior of the debugger can be configured as follows (via the config.h header):

#define DEBUGGER_THREADING DEBUGGER_SINGLE_THREADED

This sets the single thread mode of the debugger.

#define DEBUGGER_THREADING DEBUGGER_MULTI_THREADED

This sets the multi-thread mode of the debugger.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 167

Basically, in multithread mode, we just wait for some other thread to fill the LineBuf with a
command and signal the semaphore. In single thread mode, we explicitly call AcpiOsGetLine to get
a command line.

8.5 Debugger Commands
There are three classes of commands supported by the debugger:

1. The General-Purpose commands are available in all modes of the debugger. These
commands provide the basic functionality of loading tables, dumping internal data structures,
and starting the execution of control methods.

2. The Control Method Execution Commands are available only during the single-step
execution of control methods. These commands allow the display and modification of method
arguments and local variables, control method disassemble, and the setting of method
breakpoints

3. The File I/O Commands are available only if a filesystem is available to the debugger.

8.5.1 General Purpose Commands

8.5.1.1 Allocations

Memory allocation status

SYNTAX

- Allocations

This command dumps the current status of the dynamic memory allocations, as maintained by the
ACPI subsystem debug memory allocation tracking mechanism. Primarily used to detect memory
leaks, the mechanism tracks the allocation and freeing of each memory block, and maintains
statistics on the amount of memory allocated, the number of allocations, etc.

8.5.1.2 Dump

Display objects and memory

SYNTAX

- Dump <Address>|<Namepath> [Byte|Word|Dword|Qword]

A generic command to dump all internal ACPI objects and memory. The operand can be a
namespace name, a pointer to an ACPI object, or a pointer to random memory in the current address
space. The command determines the type of ACPI object and decodes it into the appropriate fields

ACPI Component Architecture Programmer Reference
R

168 Ref No SC-<xxxx>

8.5.1.3 Exit

Terminate

SYNTAX

- Exit

Terminate the ACPI subsystem and exit the debugger.

8.5.1.4 Help

Get help

SYNTAX

- Help

Displays a help screen with the syntax of each command and a short description of each.

8.5.1.5 History (! And !!)

Command line recall

SYNTAX

History

! <Command Number>

!!

last few commands. The “!” command can be used to select and re-execute a particular command
from the numbered command buffer, or the “!!” command can be used to simply re-execute the
immediately previous command.

8.5.1.6 Level

Set debug level

SYNTAX

- Allocations

Sets the global debug output level of the ACPI subsystem for both output directed to a file and
output to the console.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 169

8.5.1.7 Quit

Terminate

SYNTAX

- Quit

Terminate the current execution mode. If executing (single stepping) a control method, the method
is immediately aborted with an exception and the debugger returns to the normal command line
mode. If no control method is executing, the ACPI subsystem is terminated and the debugger exits.

8.5.1.8 Stats

Namespace statistics

SYNTAX

- Stats

Display namespace statistics that were gathered when the namespace was loaded. This includes
information about the number of objects and their types, the amount of dynamic memory required,
and the number of search operations performed on the namespace database.

8.5.1.9 Unload

Unload table

SYNTAX

- Unload <Table ID>

Unload an ACPI Table <Not implemented>

8.5.2 Namespace Access Commands

8.5.2.1 Event

Generate an ACPI Event

SYNTAX

- Event <Value>

Generate an ACPI event to test event handling <NOT IMPLEMENTED>

ACPI Component Architecture Programmer Reference
R

170 Ref No SC-<xxxx>

8.5.2.2 Find

Find names in the Namespace

SYNTAX

- Find <name>

Find an ACPI name or names within the current ACPI namespace. All names that match the given
name are displayed as they are found in the namespace. Names are up to four characters, and
wildcards are supported. A ‘?’ in the name will match any character. Thus, the wildcarded name
“A???” will match all names in the namespace that begin with the letter “A”.

8.5.2.3 Methods

List all control methods

SYNTAX

- Methods

Displays a list of all control methods (and their full pathnames) that are contained within the current
ACPI namespace. (Alias for the command “Object Methods”.)

8.5.2.4 Namespace

List the namespace

SYNTAX

- Namespace [<Address> | <Namepath>] [Depth]

Dump all or a portion of the current ACPI namespace. If given with no parameter, this command
displays the entire namespace, one named object per line with information about each object. If
given the name of an object or a pointer to an object, it displays the subtree rooted by that object.

8.5.2.5 Notify

Generate a Notify

SYNTAX

- Notify <Namepath> <Value>

Generates a notify on the specified device. This means that the notify handler for the device is
invoked with the parameters specified.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 171

8.5.2.6 Object

Display typed objects

SYNTAX

- Object <Object Type>

Display objects within the namespace of the requested type.

8.5.2.7 Owner

Display namespace by owner ID

SYNTAX

- Owner <Owner ID> [Depth]

Display objects within the namespace owned by the requested Owner ID.

8.5.2.8 Prefix

Get or Set current prefix

SYNTAX

- Prefix [<NamePath>]

Sets the pathname prefix that is prepended to namestrings entered into the debug and execute
commands. This command is the equivalent of the “CD” command.

8.5.2.9 References

Find all references to an object within the namespace

SYNTAX

- References <Address>

Display all references to the object at the specified address.

8.5.2.10 Resources

Display device resources

SYNTAX

- Resources <Address>

Display resource lists (_PRS, _CRS, etc.) for the Device object at the specified address.

ACPI Component Architecture Programmer Reference
R

172 Ref No SC-<xxxx>

8.5.2.11 Terminate

Shutdown ACPI subsystem

SYNTAX

- Terminate

Shutdown the ACPI subsystem, but don’t exit the debugger. This command is useful to find
memory leaks in the form of objects left over after the subsystem deletes the entire namespace and
all known internal objects. Any objects left over after shutdown are displayed and may be examined.

8.5.2.12 Thread

Execute a control method with multiple threads

SYNTAX

- Thread <number of threads> <number of loops> <Pathname>

Create the specified number of threads to execute the control method at <Pathname>. Each thread
will execute the method <number of loops> times. The command waits until all threads have
completed before returning.

8.5.3 Control Method Execution Commands
During single stepping of a control method, the following commands are available. The debugger
enters a slightly different command mode (as indicated by the ‘%’ prompt) when single stepping a
control method to indicate that these commands are now available

8.5.3.1 Arguments

Display Method arguments

SYNTAX

Arguments

Args

Display all arguments to the currently executing control method

8.5.3.2 Breakpoint

Set control method breakpoint

SYNTAX

- Breakpoint <AML Offset>

Set a breakpoint at the AML offset given. When execution reaches this offset, execution is stopped
and the debugger is entered.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 173

8.5.3.3 Call

Run to next call

SYNTAX

- Call

Step execution of the current control method until the next method invocation (call) is encountered.

8.5.3.4 Debug

Single step a control method

SYNTAX

- Debug <Namepath> [Arg0, Arg1,…]

Begin execution of a control method in single step mode. Each AML opcode and its associated
operand(s) is disassembled and displayed before execution. A single carriage return (Enter) single
steps to the next AML opcode. The values of the arguments and the value of the return value (if
any) are displayed for each opcode.

8.5.3.5 Execute

Execute a control method

SYNTAX

- Execute <Namepath> [Arg0, Arg1,…]

Execute a control method. This command begins execution of the named method and lets it run to
completion without single stepping. The return result if any is displayed after execution completes.

8.5.3.6 Go

Run method to next breakpoint

SYNTAX

- Go

Cease single step mode and let the control method run freely until either a breakpoint is reached or
the method terminates.

8.5.3.7 Gpe

Generate a GPE

SYNTAX

- Gpe <Block Address> <GPE number>

ACPI Component Architecture Programmer Reference
R

174 Ref No SC-<xxxx>

Generate a GPE at the GPE number within the GPE block specified at the Block Address. Use 0 for
the block address to generate a GPE within the permanent FADT-defined GPE blocks (GPE0 and
GPE1.).

8.5.3.8 Gpes

Display GPE block information

SYNTAX

- Gpes

Display information on all GPE blocks, including the FADT-defined GPE blocks (GPE0 and GPE1)
and all loaded GPE Block Devices.

8.5.3.9 Information

Info about a control method

SYNTAX

- Information

8.5.3.10 Into

Step into call

SYNTAX

- Into

Step into a control method invocation instead of over the call. The default single step behavior is to
step over control method calls, meaning that the call is executed and single stepping resumes after
the call returns. Use this command to single step the execution of a called control method.

8.5.3.11 List

Disassemble AML code

SYNTAX

- List [<Opcode count>]

Disassemble the AML code of the current control method from the current AML offset for the
length given. Useful for finding interesting places to set breakpoints.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 175

8.5.3.12 Locals

Display method local variables

SYNTAX

- Locals

Display the current values of all of the local variables for the current control method. When stepping
into a control method invocation, the locals of the newly invoked method are displayed during the
time that method is single stepped.

8.5.3.13 Results

Display method result stack

SYNTAX

- Results

Display the current contents of the “Result Stack” for the control method.

ACPI Component Architecture Programmer Reference
R

176 Ref No SC-<xxxx>

8.5.3.14 Set

Set arguments or locals

SYNTAX

- Set Arg|Local <ID> <Value>

Set the value of any of a method’s arguments or local variables

8.5.3.15 Stop

Stop method

SYNTAX

- Stop

Terminate the currently executing control method

8.5.3.16 Tree

Display calling tree

SYNTAX

- Tree

Display the calling tree of the current method.

8.5.4 File I/O Commands

8.5.4.1 Close

Close debug output file

SYNTAX

- Close

Close the debug output file, if one is currently open. Using Exit or Quit to terminate the debugger
will automatically close any open file.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 177

8.5.4.2 Load

Load ACPI table

SYNTAX

- Load <Filename>

Load an ACPI table into the namespace from a file.

8.5.4.3 Open

Open debug output file

SYNTAX

- Open <Filename>

Open a file for debug output.

ACPI Component Architecture Programmer Reference
R

178 Ref No SC-<xxxx>

9 Tools and Utilities
9.1 AcpiDump

This utility is a DOS-based table disassembler and table extractor. The 16-bit version can be put on
a DOS boot diskette and used to extract the ACPI tables from memory and store them to a disk file.

9.2 AcpiExec
This Windows-based utility can be used to load any ACPI tables from file(s), execute control
methods, single step control methods, inspect the ACPI namespace, etc. When generated from
source, it contains the entire ACPI core subsystem including the ACPI Debugger.

9.3 WDM Driver and Test Application
The WDM driver contains the ACPI Core Subsystem and the Debugger. The Ring3 test application
can be used to communicate with the ACPI Debugger. Control methods can be executed or single
stepped, the namespace can be dumped and inspected, etc. All commands of the ACPI Debugger are
available, as well as commands unique to the test application for the execution of the various Acpi*
interfaces to the core subsystem.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 179

10 Subsystem User Guide
10.1 Using the ACPI Core Subsystem Interfaces

10.1.1 Initialization Sequence
In order to allow the most flexibility for the host operating system, there is no single interface that
initializes the entire ACPI subsystem. Instead, the subsystem is initialized in stages, at the times that
are appropriate for the host OS. The following example shows the sequence of initialization calls
that must be made; it is up to the host interface (OS Services Layer) to make these calls when they
are appropriate.

1. Initialize all ACPI Code:

Status = AcpiInitializeSubsystem ();

2. Load the ACPI tables from the firmware and build the internal namespace:

Status = AcpiLoadTables ();

3. Complete initialization and put the system into ACPI mode:

Status = AcpiEnableSubsystem ();

10.1.2 Shutdown Sequence
The ACPI Core Subsystem does not absolutely require a shutdown before the system terminates. It
does not hold any cached data that must be flushed before shutdown. However, if the ACPI
subsystem is to be unloaded at any time during system operation, the subsystem should be shutdown
so that resources that are held internally can be released back to the host OS. These resources
include memory segments, an interrupt handler, and the ACPI hardware itself. To shutdown the
ACPI Core Subsystem, the following calls should be made:

1. Unload the namespace and free all resources:

Status = AcpiTerminate ();

10.1.3 Traversing the ACPI Namespace (Low Level)
This example demonstrates traversal of the APCI namespace using the low-level Acpi* primitives.
The code is in fact the implementation of the higher-level AcpiWalkNamespace interface, and
therefore this example has two purposes:

1. Demonstrate how the low-level namespace interfaces are used.

2. Provide an understanding of how the namespace walk interface works.
ACPI_STATUS
AcpiWalkNamespace (

ACPI_OBJECT_TYPE Type,
ACPI_HANDLE StartHandle,
UINT32 MaxDepth,
WALK_CALLBACK UserFunction,

ACPI Component Architecture Programmer Reference
R

180 Ref No SC-<xxxx>

void *Context,
void **ReturnValue)

{
ACPI_HANDLE ObjHandle = 0;
ACPI_HANDLE Scope;
ACPI_HANDLE NewScope;
void *UserReturnVal;
UINT32 Level = 1;

/* Parameter validation */

if ((Type > ACPI_TYPE_MAX) ||
(!MaxDepth) ||
(!UserFunction))

{
return_ACPI_STATUS (AE_BAD_PARAMETER);

}

/* Special case for the namespace root object */

if (StartObject == ACPI_ROOT_OBJECT)
{

StartObject = Gbl_RootObject;
}

/* Null child means "get first object" */

ParentHandle = StartObject;
ChildHandle = 0;
ChildType = ACPI_TYPE_ANY;
Level = 1;

/*
* Traverse the tree of objects until we bubble back up to
where we

* started. When Level is zero, the loop is done because we
have

* bubbled up to (and passed) the original parent handle
(StartHandle)

*/

while (Level > 0)
{

/* Get the next typed object in this scope. Null returned
if not found */

Status = AE_OK;
if (ACPI_SUCCESS (AcpiGetNextObject (ACPI_TYPE_ANY,

ParentHandle, ChildHandle, &ChildHandle)))
{

/* Found an object, Get the type if we are not
searching for ANY */

if (Type != ACPI_TYPE_ANY)
{

AcpiGetType (ChildHandle, &ChildType);
}

if (ChildType == Type)
{

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 181

/* Found a matching object, invoke the user
callback function */

Status = UserFunction (ChildHandle, Level,
Context, ReturnValue);
switch (Status)
{
case AE_OK:
case AE_DEPTH:

break; /* Just keep
going */

case AE_TERMINATE:
return_ACPI_STATUS (AE_OK); /* Exit now,

with OK
status */

break;

default:
return_ACPI_STATUS (Status); /* All others

are valid
exceptions
*/

break;
}

}

/*
* Depth first search: Attempt to go down another
* level in the namespace if we are allowed to. Don't
go any further if we

* have reached the caller specified maximum depth or
if the user function

* has specified that the maximum depth has been
reached.

*/

if ((Level < MaxDepth) && (Status != AE_DEPTH))
{

if (ACPI_SUCCESS (AcpiGetNextObject
(ACPI_TYPE_ANY, ChildHandle,

0, NULL)))
{

/* There is at least one child of this object,
visit the object */

Level++;
ParentHandle = ChildHandle;
ChildHandle = 0;

}
}

}

else
{

/*
* No more children in this object (AcpiGetNextObject
failed),

* go back upwards in the namespace tree to the
object's parent.

*/

ACPI Component Architecture Programmer Reference
R

182 Ref No SC-<xxxx>

Level--;
ChildHandle = ParentHandle;
AcpiGetParent (ParentHandle, &ParentHandle);

}
}

return_ACPI_STATUS (AE_OK); /* Complete walk, not terminated
by user function */

}

10.1.4 Traversing the ACPI Namespace (High Level)
This example demonstrates the use of the AcpiWalkNamespace interface and other Acpi* interfaces.
It shows how to properly invoke AcpiWalkNamespace and write a callback routine.

This code searches for all device objects in the namespace under the system bus (where most, if not
all devices usually reside.) The callback function always returns NULL, meaning that the walk is not
terminated until the entire namespace under the system bus has been traversed.

Part 1: This is the top-level procedure that invokes AcpiWalkNamespace.

DisplaySystemDevices (void)
{
ACPI_HANDLE SysBusHandle;

AcpiNameToHandle (0, NS_SYSTEM_BUS, &SysBusHandle);

printf ("Display of all devices in the namespace:\n");

AcpiWalkNamespace (ACPI_TYPE_DEVICE, SysBusHandle, INT_MAX,
DisplayOneDevice, NULL, NULL);

}

Part 2: This is the callback routine that is repeatedly invoked from AcpiWalkNamespace.

void *
DisplayOneDevice (

ACPI_HANDLE ObjHandle,
UINT32 Level,
void *Context)

{
ACPI_STATUS Status;
ACPI_DEVICE_INFO Info;
ACPI_BUFFER Path;
char Buffer[256];

Path.Length = sizeof (Buffer);
Path.Pointer = Buffer;

/* Get the full path of this device and print it */

Status = AcpiHandleToPathname (ObjHandle, &Path);
if (ACPI_SUCCESS (Status))
{

printf ("%s\n", Path.Pointer));
}

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 183

/* Get the device info for this device and print it */

Status = AcpiGetDeviceInfo (ObjHandle, &Info);
if (ACPI_SUCCESS (Status))
{

printf (" HID: %.8X, ADR: %.8X, Status: %x\n",
Info.HardwareId, Info.Address,

Info.CurrentStatus));
}

return NULL;
}

10.2 Implementing the OS Services Layer

10.2.1 Parameter Validation
In all implementations of the OS Services Layer, the interfaces should adhere to the descriptions in
the document as far as the actual interface parameters as well as the returned exception codes. This
means that the parameter validation is not optional and that the Core Subsystem layer depends on
correct exception codes returned from the OSL.

10.2.2 Memory Management
Implementation of the memory allocation functions should be straightforward. If the host operating
system has several kernel-level memory pools that can be used for allocation, it may be useful to
know some of the dynamic memory requirements of the ACPI Core Subsystem.

During initialization, the ACPI tables are either mapped from BIOS memory or copied into local
memory segments. Some of these tables (especially the DSDT) can be fairly large, up to about 64K.
The namespace is built from multiple small memory segments, each of a fixed (but configurable)
length. The default namespace table length is 16 entries times about 32 bytes each for a total of 512
bytes per table and per allocation.

During operation, many internal objects are created and deleted while servicing requests. The size of
an internal object is about 32 bytes, and this is the primary run-time memory request size.

Several internal caches are used within the core subsystem to minimize the number of requests to
the memory manager.

10.2.3 Scheduling Services
The intent of the AcpiOsQueueForExecution interface is to schedule another thread. It makes no
difference whether this is a new thread created at the time this call is made, or simply a thread that is
allocated out of a pool of system threads. Only the ACPI Debugger creates a permanent thread.

10.2.4 Mutual Exclusion and Synchronization
In a single thread environment, the semaphore interfaces can simply return AE_OK. In a multiple
thread environment, these interfaces must be implemented with real blocking semaphores since the

ACPI Component Architecture Programmer Reference
R

184 Ref No SC-<xxxx>

mutual exclusion support in the core subsystem relies completely upon the proper implementation of
this mechanism and these interfaces.

10.2.5 Interrupt Handling
In order to support the OS-independent interrupt handler that is implemented within the Core
Subsystem, the OSL must provide a local interrupt handler whose interface conforms to the
requirements of the host operating system. This local interrupt handler is a wrapper for the OS-
independent handler; it is the actual handler that is installed for the given interrupt level. The task of
this wrapper is to handle incoming interrupts and dispatch them to the OS-independent handler via
the OS-independent handler interface. When the handler returns, the wrapper performs any
necessary cleanup and exits the interrupt.

10.2.6 Stream I/O
The AcpiOsPrintf and AcpiOsVprintf functions can usually be implemented using a kernel-level
debug print facility. Kernel printf functions usually output data to a serial port or some other special
debug facility. If there is more than one type of debug print routine, use one that can be called from
within an interrupt handler so that Fixed Events and General-Purpose events can be traced.

10.2.7 Hardware Abstraction (I/O, Memory, PCI Configuration)
The intent of the hardware I/O interfaces is to allow these calls to be translated into calls or macros
provided by the host OS for this purpose. However, if the host does not provide a hardware
abstraction service, these functions can be implemented simply and directly via I/O machine
instructions.

R

 ACPI Component Architecture Programmer Reference

Ref No SC-<xxxx> 185

This page intentionally left blank.

	Contents
	1	Introduction	11
	Figure 1. The ACPI Component Architecture	13
	Introduction
	Document Structure
	Rationale and Justification
	Reference Documents
	Overview of the ACPI Component Architecture
	Overview of the ACPI Core Subsystem
	ACPI Core Subsystem
	Operating System Services Layer
	Relationships Between the Host OS, Core Subsystem, and OSL
	Host Operating System Interaction
	OS Services Layer Interaction
	ACPI Core Subsystem Interaction

	Architecture of the ACPI Core Subsystem
	AML Interpreter
	ACPI Table Management
	Namespace Management
	Resource Management
	ACPI Hardware Management
	Event Handling

	Architecture of the OS Services Layer (OSL)
	Functional Service Groups
	OS Bootload-Time Services
	Device Driver Load-Time Services
	OS Run-Time Services
	Asynchronous Services

	Required Functionality
	Requests from OS to ACPI Subsystem
	Requests from Application to ACPI Subsystem
	Requests from ACPI Subsystem to OS

	Design Overview
	ACPI Namespace Fundamentals
	Named Objects
	Scopes
	Predefined Objects
	Logical Namespace Layout

	Execution Model
	Initialization
	Memory Allocation
	Caller Allocates All Buffers
	ACPI Allocates Return Buffers

	Parameter Validation
	Exception Handling
	Multitasking and Reentrancy
	Event Handling
	Fixed Events
	General Purpose Events
	Notify Events

	Address Spaces and Operation Regions
	Installation of Address Space Handlers
	ACPI-Defined Address Spaces

	Policies and Philosophies
	External Interfaces
	Exception Codes
	Memory Buffers

	Subsystem Initialization
	ACPI Table Validation
	Required ACPI Tables

	Design and Implementation Details
	Required Host OS Initialization Sequence
	Bootload and Low Level Kernel Initialization
	ACPI CA Subsystem Initialization
	Other OS Initialization
	Device Enumeration, Configuration, and Initialization
	Final OS Initialization

	Required ACPI CA Initialization Sequence
	ACPI CA Subsystem Initialization
	AcpiInitializeSubsystem

	ACPI Table and Namespace Initialization
	AcpiLoadFirmwareTables
	AcpiLoadTable
	Internal ACPI Namespace Initialization

	Handler Installation
	Handler Types

	Subsystem Initialization Completion
	AcpiEnableSubsystem
	ACPI Hardware and Event Initialization
	Just-in-time Address Space Initialization
	AcpiIntializeObjects
	ACPI Device Initialization
	Other ACPI Object Initialization

	Other Operating System ACPI-related Initialization

	System Shutdown
	AcpiTerminate

	Multithreading Support
	Reentrancy
	Control Method Execution
	Control Method Blocking
	Control Method Execution Rules
	A Simple Multithreading Model
	A More Complex Multithreading Model

	Global Lock Support
	Obtaining The Global Lock
	Releasing the Global Lock
	Global Lock Interrupt Handler

	Single Thread Environments

	Debugging Support
	Function Tracing (ACPI_FUNCTION_TRACE Macro)
	Execution Debug Output (ACPI_DEBUG_PRINT Macro)
	ACPI Debugger

	Environmental Support Requirements
	Resource Requirements
	C Library Functions
	System Include Files
	Customization to the Target Environment

	Interface Parameters and Data Types
	ACPI Subsystem Interface Parameters
	ACPI Names and Pathnames
	Pointers
	Buffers

	ACPI Subsystem Data Types
	UINT64 and COMPILER_DEPENDENT_UINT64
	ACPI_PHYSICAL_ADDRESS
	ACPI_POINTER
	ACPI_INTEGER
	ACPI_STRING – ASCII String
	ACPI_BUFFER – Input and Output Memory Buffers
	Input Buffer
	Output Buffer

	ACPI_HANDLE – Object Handle
	Predefined Handles

	ACPI_OBJECT_TYPE – Object Type Codes
	ACPI_OBJECT – Method Parameters and Return Objects
	ACPI_OBJECT_LIST – List of Objects
	ACPI_EVENT_TYPE – Fixed Event Type Codes
	ACPI_TABLE_TYPE – ACPI Table Type Codes
	ACPI_TABLE_HEADER – Common ACPI Table Header
	ACPI_STATUS – Interface Exception Return Codes

	ACPI Resource Data Types
	PCI IRQ Routing Tables
	Device Resources
	RESOURCE_TYPE – Resource Data Types

	Exception Codes

	Subsystem Configuration
	Configuration Files
	Per-Compiler Configuration
	ACPI_DIV_64_BY_32 (Short 64-bit Divide)
	ACPI_SHIFT_RIGHT_64 (64-bit Shift)
	ACPI_EXTERNAL_XFACE
	ACPI_INTERNAL_XFACE
	ACPI_INTERNAL_VAR_XFACE
	ACPI_SYSTEM_XFACE
	ACPI_PRINTF_LIKE_FUNC
	ACPI_UNUSED_VAR
	COMPILER_DEPENDENT_INT64
	COMPILER_DEPENDENT_UINT64

	Per-Machine Configuration
	ACPI_ASM_MACROS
	ACPI_FLUSH_CPU_CACHE
	ACPI_MACHINE_WIDTH
	ACPI_OS_NAME
	ACPI_USE_STANDARD_HEADERS
	ACPI_ACQUIRE_GLOBAL_LOCK
	ACPI_RELEASE_GLOBAL_LOCK

	Other Compile-time Configuration
	ACPI_APPLICATION
	ACPI_DEBUG
	PARSER_ONLY

	Configuration of Subsystem Constants
	MAX_STATE_CACHE_DEPTH
	MAX_PARSE_CACHE_DEPTH
	MAX_OBJECT_CACHE_DEPTH
	MAX_WALK_CACHE_DEPTH

	ACPI Core Subsystem - External Interface Definition
	Subsystem Initialization, Shutdown, and Status
	AcpiInitializeSubsystem
	AcpiInstallInitializationHandler
	Interface to User Callback Function

	AcpiEnableSubsystem
	AcpiInitializeObjects
	AcpiGetSystemInfo
	AcpiSubsystemStatus
	AcpiFormatException
	AcpiPurgeCachedObjects
	AcpiTerminate

	Memory Management
	AcpiAllocate
	AcpiCallocate
	AcpiFree

	ACPI Hardware Management
	AcpiEnable
	AcpiDisable
	AcpiGetRegister
	AcpiSetRegister
	AcpiSetFirmwareWakingVector
	AcpiGetFirmwareWakingVector
	AcpiGetSleepTypeData
	AcpiEnterSleepStatePrep
	AcpiEnterSleepState
	AcpiLeaveSleepState
	AcpiAcquireGlobalLock
	AcpiReleaseGlobalLock
	AcpiGetTimerResolution
	AcpiGetTimerDuration
	AcpiGetTimer

	ACPI Table Management
	AcpiGetFirmwareTable
	AcpiFindRootPointer
	AcpiLoadTables
	AcpiLoadTable
	AcpiUnloadTable
	AcpiGetTableHeader
	AcpiGetTable

	ACPI Namespace Access
	AcpiEvaluateObject
	AcpiGetObjectInfo
	AcpiGetNextObject
	AcpiGetParent
	AcpiGetType
	AcpiGetHandle
	AcpiGetName
	AcpiGetDevices
	AcpiAttachData
	AcpiDetachData
	AcpiGetData
	AcpiWalkNamespace
	Interface to User Callback Function

	ACPI Resource Management
	AcpiGetCurrentResources
	AcpiGetPossibleResources
	AcpiSetCurrentResources
	AcpiGetIRQRoutingTable
	AcpiWalkResources
	Interface to User Callback Function

	ACPI Fixed Event Management
	AcpiEnableEvent
	AcpiDisableEvent
	AcpiClearEvent
	AcpiGetEventStatus
	AcpiInstallFixedEventHandler
	Interface to Fixed Event Handlers

	AcpiRemoveFixedEventHandler

	ACPI General Purpose Event Management
	AcpiInstallGpeBlock
	AcpiRemoveGpeBlock
	AcpiEnableGpe
	AcpiClearGpe
	AcpiGetGpeStatus
	AcpiDisableGpe
	AcpiInstallGpeHandler
	Interface to General Purpose Event Handlers

	AcpiRemoveGpeHandler

	ACPI Miscellaneous Handler Support
	AcpiInstallNotifyHandler
	Interface to Notification Event Handlers

	AcpiRemoveNotifyHandler
	AcpiInstallAddressSpaceHandler
	Interface to Address Space Setup Handlers
	Interface to Address Space Handlers
	Context for the Default PCI Address Space Handler

	AcpiRemoveAddressSpaceHandler

	OS Services Layer - External Interface Definition
	Environmental
	AcpiOsInitialize
	AcpiOsTerminate
	AcpiOsGetRootPointer
	AcpiOsPredefinedOverride
	AcpiOsTableOverride

	Memory Management
	AcpiOsMapMemory
	AcpiOsUnmapMemory
	AcpiOsGetPhysicalAddress
	AcpiOsAllocate
	AcpiOsFree
	AcpiOsReadable
	AcpiOsWritable

	Multithreading and Scheduling Services
	AcpiOsGetThreadId
	AcpiOsQueueForExecution
	AcpiOsSleep
	AcpiOsStall

	Mutual Exclusion and Synchronization
	AcpiOsCreateSemaphore
	AcpiOsDeleteSemaphore
	AcpiOsWaitSemaphore
	AcpiOsSignalSemaphore
	AcpiOsCreateLock
	AcpiOsDeleteLock
	AcpiOsAcquireLock
	AcpiOsReleaseLock

	Interrupt Handling
	AcpiOsInstallInterruptHandler
	Interface to OS-independent Interrupt Handlers

	AcpiOsRemoveInterruptHandler

	Address Space Access
	Memory and Memory Mapped I/O
	AcpiOsReadMemory
	AcpiOsWriteMemory

	Port Input/Output
	AcpiOsReadPort
	AcpiOsWritePort

	PCI Configuration Space
	AcpiOsReadPciConfiguration
	AcpiOsWritePciConfiguration
	AcpiOsDerivePciId

	Stream I/O
	AcpiOsPrintf
	AcpiOsVprintf
	AcpiOsRedirectOutput

	Miscellaneous
	AcpiOsSignal
	ACPI_SIGNAL_FATAL
	ACPI_SIGNAL_BREAKPOINT

	AcpiOsGetLine

	ACPI Debugger
	Overview
	Supported Environments
	The AcpiExec Utility

	Debugger Architecture
	Configuration and Installation
	Debugger Commands
	General Purpose Commands
	Allocations
	Dump
	Exit
	Help
	History (! And !!)
	Level
	Quit
	Stats
	Unload

	Namespace Access Commands
	Event
	Find
	Methods
	Namespace
	Notify
	Object
	Owner
	Prefix
	References
	Resources
	Terminate
	Thread

	Control Method Execution Commands
	Arguments
	Breakpoint
	Call
	Debug
	Execute
	Go
	Gpe
	Gpes
	Information
	Into
	List
	Locals
	Results
	Set
	Stop
	Tree

	File I/O Commands
	Close
	Load
	Open

	Tools and Utilities
	AcpiDump
	AcpiExec
	WDM Driver and Test Application

	Subsystem User Guide
	Using the ACPI Core Subsystem Interfaces
	Initialization Sequence
	Shutdown Sequence
	Traversing the ACPI Namespace (Low Level)
	Traversing the ACPI Namespace (High Level)

	Implementing the OS Services Layer
	Parameter Validation
	Memory Management
	Scheduling Services
	Mutual Exclusion and Synchronization
	Interrupt Handling
	Stream I/O
	Hardware Abstraction (I/O, Memory, PCI Configuration)

